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Linear Regression



Linear Models

Linear Models

_— T

Linear (comes from ‘Line’) Mathematical models



Regression

* Regression is a (statistical) method of
fitting curves through data points

* The term “regression” was coined by
Francis Galton in the 19t century to
describe a biological phenomenon.

* The taller the parents, the taller the
children, but shorter than their parents

* The shorter the parents, the shorter the
children, but taller than their parents

* “regression to the mean”

JMPer Cable Summer 98: Why is it called Regression? (jhsph.edu)



http://www.biostat.jhsph.edu/courses/bio653/misc/JMPer%20Cable%20Summer%2098%20Why%20is%20it%20called%20Regression.htm

1D Linear Regression
* Fitting a line that explains the data




1D Linear Regression

* Fitting a line that explains the data
 Given a new data x', predict y’




1D Linear Regression

* Fitting a line that explains the data

{(x(i),y(i))}

fx) =wx

e What is the best line?

* Aline that is close to all data points
‘on average’

 Mean squared error (MSE) loss

N
1

w* = arg min Ez(y(i) — Wx(i))2

w :
1=1



1D Linear Regression

N
1 . .
L(W) — Ez(y(l) — Wx(l))z
=1

w” = arg min L(w)
w

* The least squares method
* L2 Loss function

» N and {(x¥,y®)} are constants (given), and only w is ‘unknown’
* We are going to find w that minimizes the loss function L(w)

* Then, how?



1D Linear Regression

N N
L(w) = %E(y(i) _ Wx(i))z — %E(y(i))z 4 WZ(x(i))z _ wa(i)y(i)
=1 i=1

A g

L(w) is a quadradic function
How to minimize a quadratic function?



1D Linear Regression

* Minimizing a quadratic function
* Take a derivative, and set it to zero

L(w) |

Does it have a solution?
If so, is it an unique solution?




1D Linear Regression

N
1 . |
L(w) = 52@(” — wx®)?
=1

N
dL(w) . o
L'(w) = _ z(ya) — wx®)x® =
dw -
N 5 (D (D

M Y ICIO)E



1D Linear Regression

* It is the simplest possible neural network

(O




2D Linear Regression

Z = sz‘l‘le

N
A 1 . . .
’ L(wy,wy) = EZ(Z(‘) — wyx® — le(‘))z
i=1




2D Linear Regression

Z = WyX +W1y

, N , _— N y®z® — W, YN zOy®
L(wy,wr) = Ez(z(‘) — wox® — wyy®) ' YL (y®)
=1
doL : . , , l 1 x W70 — Wq _1 x(l)y(l)
- Z(Z(‘) —wpx® —wyO)(—yD) =0 w; = N (x0)2
L~
T = 2(2@ — wyx® — W,y ) (=x®) = 0

=1



2D Linear Regression

* Single-layer neural network w/ two input units

Z = WyX + w1y



Bias term and Higher Dimension

y = wix +wg

Z:W2x+W1y+WO




Linear Algebra

* Linear algebra comes to the rescue!
* Problem setup

D ={(x®,y@®), .., (x™), y ")}

x® e R, y® e R,w e R? - £ W
X e RV*e y e RN

1
L(w) = > Y —Xw)T (Y — Xw)

1w n
. N 2 =
— zz(y(” —wTx®) o
=1

(Y — Xw)

y® — yTx®

-

(Y — Xw) € RN

Y -—Xw)"(Y —Xw) eR



Linear Algebra

* Linear algebra comes to the rescue!

* Problem setup
arg min L(w)
D = {(x® yD) _ (x® @) w
.{(x,y.),,(x,y)} 1 oo T TyT TyT
x® e R yD e Rw e R? L(W)=§(Y Y-Y'Xw—-w' X'Y+w' X' Xw)
X e RV*4y e RN

1
) = STV = 2V TXw + wTXTXw)
L(w) = > Y —Xw)T (Y — Xw)

VLW) ==Y X+ X" Xw=0

N
1 : N 2
_ - @ — T @
zz(y wTx®) w*=XTX)"lyTx = (XTx) 1xTy
=1

(normal equation)



Shallow Neural Network

* It is a single layer neural network




What's Wrong with It?

w* = (XTX)"1xTy



Gradient Descent

* For convex optimization, it is guaranteed to converge to global optima

N
1 . . 1
L(w) = 52@(” — wa@)2 = (Y — Xw)T(Y — Xw)
=1

N

dL . . .

o= Z(WTx(‘) —yW)x® = XT(Xw — Y)
i=1

a dL
wi=w—al -

(descent) (step-size) (gradient)



Linear Classification

- Linear Models and Multi-Layer Perceptron-



Linear Classification

* Linear decision boundary

x+b=0

W1 X4 +W2x2 +b=0

W1X1 + WyXy +W3x3 +b =0



Rosenblatt's Perceptron

* A single perceptron as a linear decision boundary (hyperplane)

1, wlx >0
0, wlix <0

Rosenblatt, Psychological Review 1958



Perceptron

* Weight vector is orthogonal to the hyperplane

wix—b=0




Perceptron
* Find a separating hyperplane

ﬂk




Perceptron

* Find a separating hyperplane

Angles between all positive examples x() and
w should be less then 90 degree

Angles between all negative examples x() and
w should be greater then 90 degree




Perceptron Learning Algorithm

* Find the w vector that perfect

y classify training examples

Algorithm

: Perceptron Learning Algorithm

P « inputs

N <« inputs

Initialize w
while !conv

Hxel

with label 1:
with label 0
randomly;
ergence do

Pick random x€ PUN :

and w.x < (0 then

‘ W=W-++X;

end

if xe N and w.x >0 then

‘ W=W—X |

end
end

//the algorithm converges when all the
inputs are classified correctly




Perceptron Learning Algorithm

* Find a separating hyperplane

1 4
@ O

. Wnew .




Problems

e Which one is better?




Problems

 What about not linearly separable cases?

4 )




Logistic Function (aka Sigmoid)

e Squeezing the output of a ‘linear equation” between 0 and 1

e

1, x>0 B 1
o(x) = 1+e*




Logistic Regression

* Using the ‘logistic function’ to
squeeze the output of a ‘linear
equation’

co(w'x) €[0,1] (w/sigmoid)
« step(w'x) € {0,1}  (thresholding)

* So, now it’s more like probability
* p(y =1lx;w) = a(wTx)
c p(y=0|x;w) =1—0(w'x)




MSE Loss for Logistic Regression

e Can we apply MSE loss function to logistic regression?

D = {(x(l); y(l)): rery (x(N)’y(N))}
x® e R y® € {0,1},w € R?
X e RV )y € {0,1}V

N
1 . N 2
MSE(w) = 52(31(‘) — o(wTx®))
=1



MSE Loss for Logistic Regression

e Can we apply MSE loss function to logistic regression?

D = {(x(l); y(l)): rery (x(N)’y(N))}
x® e R y® € {0,1},w € R?
X e RV )y € {0,1}V

N
1 . L2 : .

MSE(w) = _E(y(l) — a(wa(‘))) It is not a convex function
2 = (convince yourself)



Log Loss (Binary Cross Entropy)

D = {(x(l); y(l))» rery (x(N)’y(N))}
x® e R%,yW € {0,1},w € RY
X e RV )y € {0,1}V

9O = o'(WTx(i))

N
b = 3y a(50) + 1y s -

=1

y®)

0 1\ I

—log(x)



Log Loss (Binary Cross Entropy)

e Can we apply MSE loss function to logistic regression?

y(l) — O'(WTX(i)) 2
: |
BCE(w) = — Z yDlog(®) + (1 —y@)log(1 — V)
= \
—log(1-9%), y®=0
—log(®), yW =1
0 1\ i

—log(x)



Log Loss (Binary Cross Entropy)

e Can we apply MSE loss function to logistic regression?

y(l) — O'(WTX(i)) 2
: |
BCE(w) = — Z yDlog(®) + (1 —y@)log(1 — V)
= \
—log(1—-9%), y®=0
—log(®), y® =1
0 1\ i

It is a convex function
(convince yourself) —log(x)



Derivative of Sigmoid Function

1
14+e™*
do(x) e * B 1
dx  (1+e*)2 (1+e*)(1+e*)

o(x) =

—X

=0o(x)(1—-0a(x))




BCE Loss

N
BCEGH) = - )0 log(50) + (1 - yO)og(1 — 39)

=1
N .
OBCE(w) z OBCE(w) 99 ®
ow; L 0y®  ow;
ST 1 0y
— _ (i) — y@®
). (wo Ot o-y )> ow;
1=1

<

N
_ E(y(o —y®) xj@
=1

1 1 W) o N
("(i) yOt = (- Y(l))>?(‘)(1 -99)x"

5}(1') = O'(WTx(i))



BCE Loss

N
BCE(w) = — 2 y©log(9®) + (1 - y)log(1 —3®) 5O = g(wTx®)

=1

N
dBCE(w) . . :
=§ NOPNONNO
ow; .1(y Y )x]
1=

J

dBCE(w)
ow

=XT(ac(Xw) —Y)

Can you solve this as we did before?
(take the gradients, and set to zero)



BCE Loss

N
BCE(w) = — 2 ylog(9®) + (1 - y©)log(1 - 5®) 5O = g(wTx®)

=1

N

dBCE(w) . . :

=N (50 - ) = 0

dw; .1(y Y )x]
1=

dBCE(w)
ow

=X"(c(Xw)—-Y) =0

N
Wi = w; —a z(y@ — y ) x®
i=1

wi=w—aX (c(Xw) —Y)) (Gradient Descent)



Probabilistic Interpretation



Maximum Likelihood Estimation (MLE)

Probability Likelihood
A (probability density/mass) function A (probability density /mass) function of
of the data given the fixed parameters parameters given the data
1 _(x—p)* 1 _(x—w)*
p(x;u,0) = e 207 L(u,0;x) = e 207

202 2o



Maximum Likelihood Estimation (MLE)

Probability Density Function Likelihood

p(a < x < b)




Maximum Likelihood Estimation (MLE)

Finding the parameters that maximize the probability (density/mass)
function

|.1.D assumption

i/

argmax L(0;x) = argmax | |p(x;;0)
6

0 i=1

N
= arg max log 1_[ p(x;; 0)
6 ;
=1

D = {xl,xz,x3, ...,xN}

N
= arg maxz log p(x;;0)
6 A
1=1



Maximum Likelihood Estimation (MLE)

* Finding the parameters that maximize the probability (density/mass)
function

N
arg maxz log p(x;; 0)
6 4
i=1

N 2
| ( 1 _(xi—LZL) )
= arg maxz og e 20
0 — V2mo?
N

N2
=argmax ) — b — 1) — log (\/ Znaz)

2072
0 i=1

D = {xl,xz,x3, ...,xN}



Maximum Likelihood Estimation (MLE)

* Finding the parameters that maximize the probability (density/mass)
function

N

(i = 1)
arg max ) — lzaéu —log(\/Znaz)

o=

N

1 G —w?
du P — log (\/ 27102)

=1
N

| D ={x1,x2,x3, ...,xN}
i=1 .

| &
xl Np = w =_zxi
=1

"Mz
=



Maximum Likelihood Estimation (MLE)

* Finding the parameters that maximize the probability (density/mass)
function

S (g — )2

argmax ) —— ——— log (\/ 27702)

. D ={x1,x2,x3, ...,xN}
i=1




MLE for Linear Regression

* Finding the parameters that maximize '‘conditional likelihood'

Assumptionl: p(y|x) is a normal distribution

Assumption2: I.I.D

N T \2
N 1 (ri—6"xy)
L(H) — lo |xi: 0) = lo ( e 202 )
21 gp(yilxi; 0) E 08\ 70—

N
1
= —ﬁZ(yi — 0"x;)?* — Nlog (\/ 2n02)
i=1

o = 1, we recover MSE Loss



MLE for Logistic Regression

* Finding the parameters that maximize '‘conditional likelihood'

Assumptionl: p(y|x) is a Bernoulli distribution

Assumption2: I.I.D

N

N
_ . _ YYi(1 — Nt
L(O) = ; log p(y;|x;;0) = Zizllog a(0"x;)Y (1 a(HTxl))
N
— 2 yiloga(87x;) + (1 —y) log(1—a(67x;))
i=1

We recover BCE Loss



Multiclass Classification



Multiclass (Multinomial) Classification

* Cross Entropy Loss
e BCE is a special case of CE (two classes)

i=1c=1 0
N 2 0
BCE(w) = —Z Eyc(l) log(j?c(i)) y® = 1 (one-hot vector)
i=1c=1 :
0.




Softmax Function

e ‘Soft’ ‘Max’ function

 [1,2,3,2,1] - [0.0674,0.183,0.498,0.183,0.0674]

softmax: R¢ —

[0,1]¢

|softmax(x)| =1

softmax(x); =

softmax(x) =

e*i

Zlczl exl

e*1

iC=1 e
eXz

e*c

_Zlczl exl_

€ [0,1]¢

softmax



Derivative of the Softmax Function

e’

Vi =
x.
i=1 €71

0y |yi(1—yp), =]

hd T v (10 = Y — v
0x; {_Yin: L# ] yi(1 =13 =)
dy [)’1(1 - Y1) Y1Y4

Dol oy vy

Convince yourself ©



Cross-Entropy + Softmax

c
Lw) ==Y yilog@)  Fimsr—z  Z=Wx
i=1 j=1¢
9y _ (1 =730, i=j
ox; (=Y, L#]
c c R c R
oL _izy log(§,) = zy dlog(¥;) Vi 09
= i i) = — i == ) ==
aZj aZJ = = aZ] o Vi aZJ
) 39 € oo c
j 9Y;j Yi 0Yi Vi . ~ Yi o A
LI NUB_ A gy Y Ygs
Vi 0z; — Vi 0z; y;7’ ! — Y l

c c
= —Yj‘l'y]'f’j"'Z)’if’j = _yj+5;jzyi =Y~ Yj

=] =1




Relationship to Logistic Regression

* Logistic regression is a special case of CE+Softmax classification when C = 2

Convince yourself ©



Multi-Layer Perceptron



Linear Models

* Is linear model a good for all?




Nonlinear Models

* nth-degree Polynomial regression

20
il

— T"ul:h
= Ectimate
L] f— I:E

f(x) =wy +wix + wyx? + wax3 + -+ wyx™

=10 4




Polynomals as Neural Network

f(x) =wy +wix + wyx? + wax® + -+ + wyx™

* Feature engineering is hard

e Can we make it non-linear w/o feature
engineering?




Feed-Forward Neural Network

A
X =® Wy W, x

f(x) = wiw,x

Is it non-linear in x?



Feed-Forward Neural Network

* Using non-linear activation function

" /\ .
@ > a() "w,a(wyx)

f(x) = waa(wyx)

(

a(x) = max(0, x) (Rectifier Linear Unit)

a(x) = 1+ % (Sigmoid)



Feed-Forward Neural Network

* AKA, Multi-Layer Perceptron




Feed-Forward Neural Network

* AKA, Multi-Layer Perceptron




Feed-Forward Neural Network

* Regression with two layers MLP

D = {(x®,y®), .., (x™, y ™}

x® e R yW e R X e RV Yy e RV
0 = {Wy, W,}, W, € R4 W, € R*"
fo(x) = Wo(W;x)

forRY - R

N
L(O) = %Z(y(i) — fo (x(i)))z = %(Y — U(W1XT)TW2T)T(Y — U(W1XT)TW2T)
=1



Feed-Forward Neural Network

* Regression with two layers MLP

_ (1) 4, (D (N) (V)
D {(x Y ),___,(x & )} 1. Canyou take the gradients?

x® e R%,yD e R X € RV Yy € RV 2. Does it have a closed form solution?
0 = {w,, W,}, Wy € R4 W, e R*" 3. lIsita convex function?

fo (x) = Wro(Wyx)

forRY - R

N
L(O) = %Z(y(i) — fo (x(i)))z = %(Y — U(W1XT)TW2T)T(Y — U(W1XT)TW2T)
=1



The Universal Approximator



The Universal Approximation Theorem

* A single hidden layer neural network can approximate any continuous
function arbitrarily well, given enough hidden units.

* This holds for many different activation functions, e.g. sigmoid, tanh, RelLU,
etc.



The Universal Approximation Theorem

™
i

-
v




The Universal Approximation Theorem

w=5b=0

wx + b
O ® °

w=55b=3

w =100,b = -20

-

0




The Universal Approximation Theorem

wy = 100,b, = —20

W3 = 1,W4_ = -1

W, = 100, b1 = —60
Wy = 100, bz = —80
W3 = 2, Wy = —2




The Universal Approximation Theorem




The Universal Approximation Theorem

o




The Universal Approximator in 2D

[ 1.0
o8
- 0.6

[ 0.4

0.2
- 0.0
10

0
20 4
® e 0 2 2
1 1wy o



The Universal Approximator in 2D




The Universal Approximation Theorem

* Single layer might be enough, but it requires ‘enough’ neurons.

* Informally, ‘shallower and wider’ networks require exponentially more
hidden units to compute ‘narrower and deeper’ neural networks

e Lecture 2 | The Universal Approximation Theorem - YouTube



https://www.youtube.com/watch?v=lkha188L4Gs
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