

Deep Learning

- Linear Models and Multi-Layer Perceptron-

Eunbyung Park

Assistant Professor

School of Electronic and Electrical Engineering

Eunbyung Park (silverbottlep.github.io)

Linear Models

Linear Models

Linear (comes from 'Line')

Mathematical models

Regression

- Regression is a (statistical) method of fitting curves through data points
- The term "regression" was coined by Francis Galton in the 19th century to describe a biological phenomenon.
 - The taller the parents, the taller the children, but shorter than their parents
 - The shorter the parents, the shorter the children, but taller than their parents
 - "regression to the mean"

JMPer Cable Summer 98: Why is it called Regression? (jhsph.edu)

• Fitting a *line* that explains the data

- Fitting a *line* that explains the data
- Given a new data x', predict y'

• Fitting a line that explains the data $\{(x^{(i)}, y^{(i)})\}$

$$f(\mathbf{x}) = w\mathbf{x}$$

- What is the best line?
 - A line that is close to all data points 'on average'
 - Mean squared error (MSE) loss

$$w^* = \underset{w}{\operatorname{arg\,min}} \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - wx^{(i)})^2$$

$$L(w) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - wx^{(i)})^{2}$$

$$w^* = \underset{w}{\operatorname{arg min}} L(w)$$

- The least squares method
 - L2 Loss function
- N and $\{(x^{(i)}, y^{(i)})\}$ are constants (given), and only w is 'unknown'
- We are going to find w that minimizes the loss function L(w)
- Then, how?

$$L(w) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - wx^{(i)})^2 = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)})^2 + w^2(x^{(i)})^2 - 2wx^{(i)}y^{(i)}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{N} (x^{(i)})^{2} \right) w^{2} + \left(\sum_{i=1}^{N} x_{i} y^{(i)} \right) w + \frac{1}{2} \left(\sum_{i=1}^{N} (y^{(i)})^{2} \right)$$

L(w) is a quadradic function How to minimize a quadratic function?

- Minimizing a quadratic function
 - Take a derivative, and set it to zero

Does it have a solution?

If so, is it an unique solution?

$$L(w) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - wx^{(i)})^{2}$$

$$L'(w) = \frac{dL(w)}{dw} = \sum_{i=1}^{N} (y^{(i)} - wx^{(i)})x^{(i)} = 0$$

$$w^* = \frac{\sum_{1}^{N} x^{(i)} y^{(i)}}{\sum_{1}^{N} (x^{(i)})^2}$$

• It is the simplest possible neural network

$$z = w_2 x + w_1 y$$

$$L(w_1, w_2) = \frac{1}{2} \sum_{i=1}^{N} (z^{(i)} - w_2 x^{(i)} - w_1 y^{(i)})^2$$

$$z = w_2 x + w_1 y$$

$$L(w_1, w_2) = \frac{1}{2} \sum_{i=1}^{N} (z^{(i)} - w_2 x^{(i)} - w_1 y^{(i)})^2$$

$$w_1 = \frac{\sum_{i=1}^{N} y^{(i)} z^{(i)} - w_2 \sum_{i=1}^{N} z^{(i)} y^{(i)}}{\sum_{i=1}^{N} (y^{(i)})^2}$$

$$\frac{\partial L}{\partial w_1} = \sum_{i=1}^{N} \left(z^{(i)} - w_2 x^{(i)} - w_1 y^{(i)} \right) (-y^{(i)}) = 0 \qquad w_2 = \frac{\sum_{i=1}^{N} x^{(i)} z^{(i)} - w_1 \sum_{i=1}^{N} x^{(i)} y^{(i)}}{\sum_{i=1}^{N} (x^{(i)})^2}$$

$$w_2 = \frac{\sum_{i=1}^{N} x^{(i)} z^{(i)} - w_1 \sum_{i=1}^{N} x^{(i)} y^{(i)}}{\sum_{i=1}^{N} (x^{(i)})^2}$$

$$\frac{\partial L}{\partial w_2} = \sum_{i=1}^{N} (z^{(i)} - w_2 x^{(i)} - w_1 y^{(i)})(-x^{(i)}) = 0$$

Single-layer neural network w/ two input units

Bias term and Higher Dimension

$$y = w_1 x + w_0$$

$$z = w_2 x + w_1 y + w_0$$

Linear Algebra

- Linear algebra comes to the rescue!
- Problem setup

$$D = \left\{ \left(x^{(1)}, y^{(1)} \right), \dots, \left(x^{(N)}, y^{(N)} \right) \right\}$$
$$x^{(i)} \in \mathbb{R}^d, y^{(i)} \in \mathbb{R}, w \in \mathbb{R}^d$$
$$X \in \mathbb{R}^{N \times d}, Y \in \mathbb{R}^N$$

$$L(w) = \frac{1}{2} (Y - Xw)^{\mathsf{T}} (Y - Xw)$$
$$= \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - w^{\mathsf{T}} x^{(i)})^{2}$$

Linear Algebra

- Linear algebra comes to the rescue!
- Problem setup

$$D = \{ (x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)}) \}$$

$$x^{(i)} \in \mathbb{R}^d, y^{(i)} \in \mathbb{R}, w \in \mathbb{R}^d$$

$$X \in \mathbb{R}^{N \times d}, Y \in \mathbb{R}^N$$

$$L(w) = \frac{1}{2} (Y - Xw)^{\mathsf{T}} (Y - Xw)$$
$$= \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - w^{\mathsf{T}} x^{(i)})^{2}$$

$$\arg\min_{w} L(w)$$

$$L(w) = \frac{1}{2} (Y^{T}Y - Y^{T}Xw - w^{T}X^{T}Y + w^{T}X^{T}Xw)$$

$$= \frac{1}{2} (Y^{T}Y - 2Y^{T}Xw + w^{T}X^{T}Xw)$$

$$\nabla L(w) = -Y^{T}X + X^{T}Xw = 0$$

$$w^{*} = (X^{T}X)^{-1}Y^{T}X = (X^{T}X)^{-1}X^{T}Y$$
(normal equation)

Shallow Neural Network

• It is a single layer neural network

What's Wrong with It?

$$w^* = (X^\mathsf{T} X)^{-1} X^\mathsf{T} Y$$

Gradient Descent

For convex optimization, it is guaranteed to converge to global optima

$$L(w) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - w^{\mathsf{T}} x^{(i)})^{2} = \frac{1}{2} (Y - Xw)^{\mathsf{T}} (Y - Xw)$$

$$\frac{dL}{dw} = \sum_{i=1}^{N} (w^{\mathsf{T}} x^{(i)} - y^{(i)}) x^{(i)} = X^{\mathsf{T}} (Xw - Y)$$

$$w \coloneqq w - \alpha \left(\frac{dL}{dw}\right)$$

(descent) (step-size) (gradient)

Linear Classification

- Linear Models and Multi-Layer Perceptron-

Linear Classification

Linear decision boundary

$$x + b = 0$$

$$w_1 x_1 + w_2 x_2 + b = 0$$

$$w_1 x_1 + w_2 x_2 + w_3 x_3 + b = 0$$

Rosenblatt's Perceptron

A single perceptron as a linear decision boundary (hyperplane)

Perceptron

Weight vector is orthogonal to the hyperplane

Perceptron

• Find a separating hyperplane

Perceptron

Find a separating hyperplane

Angles between all positive examples $x^{(i)}$ and w should be less then 90 degree

Angles between all negative examples $x^{(i)}$ and w should be greater then 90 degree

Perceptron Learning Algorithm

Find the w vector that perfectly classify training examples

```
Algorithm: Perceptron Learning Algorithm
P \leftarrow inputs with label 1;
N \leftarrow inputs \quad with \quad label \quad 0;
Initialize w randomly;
while !convergence do
    Pick random \mathbf{x} \in P \cup N;
    if x \in P and w.x < 0 then
        \mathbf{w} = \mathbf{w} + \mathbf{x};
    end
    if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then
    end
end
//the algorithm converges when all the
 inputs are classified correctly
```

Perceptron Learning Algorithm

• Find a separating hyperplane

Problems

• Which one is better?

Problems

• What about not linearly separable cases?

Logistic Function (aka Sigmoid)

• Squeezing the output of a 'linear equation' between 0 and 1

$$step(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Logistic Regression

- Using the 'logistic function' to squeeze the output of a 'linear equation'
 - $\sigma(w^{\mathsf{T}}x) \in [0,1]$ (w/ sigmoid)
 - $step(w^Tx) \in \{0,1\}$ (thresholding)
- So, now it's more like probability
 - $p(y = 1|x; w) = \sigma(w^T x)$
 - $p(y = 0|x; w) = 1 \sigma(w^{T}x)$

MSE Loss for Logistic Regression

Can we apply MSE loss function to logistic regression?

$$D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})\}$$

$$x^{(i)} \in \mathbb{R}^d, y^{(i)} \in \{0,1\}, w \in \mathbb{R}^d$$

$$X \in \mathbb{R}^{N \times d}, Y \in \{0,1\}^N$$

MSE(w) =
$$\frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \sigma(w^{T}x^{(i)}))^{2}$$

MSE Loss for Logistic Regression

Can we apply MSE loss function to logistic regression?

$$D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})\}$$

$$x^{(i)} \in \mathbb{R}^d, y^{(i)} \in \{0, 1\}, w \in \mathbb{R}^d$$

$$X \in \mathbb{R}^{N \times d}, Y \in \{0, 1\}^N$$

$$MSE(w) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \sigma(w^{T}x^{(i)}))^{2}$$

It is not a convex function (convince yourself)

Log Loss (Binary Cross Entropy)

$$D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})\}$$

$$x^{(i)} \in \mathbb{R}^d, y^{(i)} \in \{0,1\}, w \in \mathbb{R}^d$$

$$X \in \mathbb{R}^{N \times d}, Y \in \{0,1\}^N$$

$$\hat{y}^{(i)} = \sigma \big(w^\top x^{(i)} \big)$$

$$BCE(w) = -\sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

 $-\log(x)$

Log Loss (Binary Cross Entropy)

Can we apply MSE loss function to logistic regression?

$$\hat{y}^{(i)} = \sigma(w^{\mathsf{T}} x^{(i)})$$

$$BCE(w) = -\sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$-\log(1-\hat{y})$$
, $y^{(i)}=0$

$$-\log(1-\hat{y}), \qquad y^{(i)} = 0$$

$$-\log(\hat{y}), \qquad y^{(i)} = 1$$

 $-\log(x)$

Log Loss (Binary Cross Entropy)

Can we apply MSE loss function to logistic regression?

$$\hat{y}^{(i)} = \sigma(w^{\mathsf{T}} x^{(i)})$$

$$BCE(w) = -\sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$-\log(1-\hat{y})$$
, $y^{(i)}=0$

$$-\log(1-\hat{y}), \qquad y^{(i)} = 0$$

 $-\log(\hat{y}), \qquad y^{(i)} = 1$

 $-\log(x)$

It is a convex function (convince yourself)

Derivative of Sigmoid Function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \frac{1}{(1 + e^{-x})} \frac{e^{-x}}{(1 + e^{-x})} = \sigma(x)(1 - \sigma(x))$$

BCE Loss

$$\begin{aligned} \text{BCE}(w) &= -\sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \\ \frac{\partial \text{BCE}(w)}{\partial w_j} &= \sum_{i=1}^{N} \frac{\partial \text{BCE}(w)}{\partial \hat{y}^{(i)}} \frac{\partial \hat{y}^{(i)}}{\partial w_j} \\ &= -\sum_{i=1}^{N} \left(\frac{1}{\hat{y}^{(i)}} y^{(i)} + \frac{1}{1 - \hat{y}^{(i)}} (1 - y^{(i)}) \right) \frac{\partial \hat{y}^{(i)}}{\partial w_j} \\ &= -\sum_{i=1}^{N} \left(\frac{1}{\hat{y}^{(i)}} y^{(i)} + \frac{1}{1 - \hat{y}^{(i)}} (1 - y^{(i)}) \right) \hat{y}^{(i)} (1 - \hat{y}^{(i)}) x_j^{(i)} \\ &= \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)} \end{aligned}$$

BCE Loss

$$BCE(w) = -\sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$\hat{y}^{(i)} = \sigma(w^{\mathsf{T}} x^{(i)})$$

$$\frac{\partial \text{BCE}(w)}{\partial w_j} = \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)}$$

$$\frac{\partial \mathrm{BCE}(w)}{\partial w} = X^{\mathsf{T}}(\sigma(Xw) - Y)$$

Can you solve this as we did before? (take the gradients, and set to zero)

BCE Loss

$$BCE(w) = -\sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$\hat{y}^{(i)} = \sigma(w^{\mathsf{T}} x^{(i)})$$

$$\frac{\partial \text{BCE}(w)}{\partial w_j} = \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)} = 0$$

$$\frac{\partial \mathrm{BCE}(w)}{\partial w} = X^{\mathsf{T}}(\sigma(Xw) - Y) = 0$$

$$w_j \coloneqq w_j - \alpha \left(\sum_{i=1}^N (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)} \right)$$
$$w \coloneqq w - \alpha (X^{\mathsf{T}} (\sigma(Xw) - Y))$$

(Gradient Descent)

Probabilistic Interpretation

Probability

A (probability density/mass) function of the data given the fixed parameters

$$p(\mathbf{x}; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\mathbf{x}-\mu)^2}{2\sigma^2}}$$

Likelihood

A (probability density /mass) function of parameters given the data

$$L(\mu, \sigma; x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Probability Density Function

Likelihood

$$\arg \max_{\theta} \sum_{i=1}^{N} \log p(x_i; \theta)$$

$$= \arg \max_{\theta} \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} \right)$$

$$= \arg \max_{\theta} \sum_{i=1}^{N} -\frac{(x_i - \mu)^2}{2\sigma^2} - \log \left(\sqrt{2\pi\sigma^2} \right)$$

$$\underset{\mu}{\operatorname{arg\,max}} \sum_{i=1}^{N} -\frac{(x_i - \mu)^2}{2\sigma^2} - \log\left(\sqrt{2\pi\sigma^2}\right)$$

$$\frac{1}{d\mu} \sum_{i=1}^{N} -\frac{(x_i - \mu)^2}{2\sigma^2} - \log\left(\sqrt{2\pi\sigma^2}\right)$$

$$=\sum_{i=1}^{N}\frac{(x_i-\mu)}{\sigma^2}=0$$

$$\sum_{i=1}^{N} x_i - N\mu = 0$$

$$\mu^* = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\underset{\sigma}{\operatorname{arg\,max}} \sum_{i=1}^{N} -\frac{(x_i - \mu)^2}{2\sigma^2} - \log\left(\sqrt{2\pi\sigma^2}\right)$$

$$\frac{1}{d\sigma} \sum_{i=1}^{N} -\frac{(x_i - \mu)^2}{2\sigma^2} - \log\left(\sqrt{2\pi\sigma^2}\right)$$

$$= \frac{1}{\sigma^3} \sum_{i=1}^{N} (x_i - \mu)^2 - \frac{N}{\sigma} = 0$$

$$\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 = \sigma^2 \qquad \sigma^* = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

MLE for Linear Regression

• Finding the parameters that maximize 'conditional likelihood'

Assumption1: p(y|x) is a normal distribution

Assumption2: I.I.D

$$L(\theta) = \sum_{i=1}^{N} \log p(y_i|x_i;\theta) = \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}}\right)$$
$$= -\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - \theta^T x_i)^2 - \text{Nlog}\left(\sqrt{2\pi\sigma^2}\right)$$

 $\sigma = 1$, we recover MSE Loss

MLE for Logistic Regression

• Finding the parameters that maximize 'conditional likelihood'

Assumption1: p(y|x) is a Bernoulli distribution

Assumption2: I.I.D

$$L(\theta) = \sum_{i=1}^{N} \log p(y_i|x_i;\theta) = \sum_{i=1}^{N} \log \sigma(\theta^{\mathsf{T}}x_i)^{y_i} (1 - \sigma(\theta^{\mathsf{T}}x_i))^{1-y_i}$$
$$= \sum_{i=1}^{N} y_i \log \sigma(\theta^{\mathsf{T}}x_i) + (1 - y_i) \log(1 - \sigma(\theta^{\mathsf{T}}x_i))$$

We recover BCE Loss

Multiclass Classification

Multiclass (Multinomial) Classification

- Cross Entropy Loss
 - BCE is a special case of CE (two classes)

$$CE(w) = -\sum_{i=1}^{N} \sum_{c=1}^{C} y_c^{(i)} \log(\hat{y}_c^{(i)}) \qquad \hat{y}^{(i)} = \sigma(w^{\mathsf{T}} x^{(i)}) \in \mathbb{R}^C$$

$$BCE(w) = -\sum_{i=1}^{N} \sum_{c=1}^{2} y_c^{(i)} \log(\hat{y}_c^{(i)}) \qquad y^{(i)} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{bmatrix} \text{ (one-hot vector)}$$

Softmax Function

- 'Soft' 'Max' function
 - $[1,2,3,2,1] \rightarrow [0.0674,0.183,0.498,0.183,0.0674]$

softmax:
$$\mathbb{R}^C \to [0,1]^C$$

|softmax(x)| = 1

$$\operatorname{softmax}(x)_{j} = \frac{e^{x_{j}}}{\sum_{i=1}^{C} e^{x_{i}}}$$

$$\operatorname{softmax}(x) = \begin{bmatrix} \frac{e^{x_1}}{\sum_{i=1}^{C} e^{x_i}} \\ \frac{e^{x_2}}{\sum_{i=1}^{C} e^{x_i}} \\ \vdots \\ \frac{e^{x_C}}{\sum_{i=1}^{C} e^{x_i}} \end{bmatrix} \in [0,1]^C$$

Derivative of the Softmax Function

$$y_j = \frac{e^{x_j}}{\sum_{i=1}^C e^{x_i}}$$

$$\frac{\partial y_i}{\partial x_i} = \begin{cases} y_i(1 - y_i), & i = j \\ -y_i y_j, & i \neq j \end{cases} = y_i (1\{i = j\} - y_j)$$

$$\frac{dy}{dx} = \begin{bmatrix} y_1(1-y_1) & \cdots & y_1y_4 \\ \vdots & \ddots & \vdots \\ -y_4y_1 & \cdots & y_C(1-y_C) \end{bmatrix}$$

Cross-Entropy + Softmax

$$L(w) = -\sum_{i=1}^{C} y_i \log(\hat{y}_i)$$
 $\hat{y}_i = \frac{e^{z_i}}{\sum_{j=1}^{C} e^{z_j}}$ $z_c = W_c^{\mathsf{T}} x$

$$\frac{\partial \hat{y}_i}{\partial x_j} = \begin{cases} \hat{y}_i (1 - \hat{y}_i), & i = j \\ -\hat{y}_i \hat{y}_j, & i \neq j \end{cases}$$

$$\frac{\partial L}{\partial z_j} = -\frac{\partial}{\partial z_j} \sum_{i=1}^C y_i \log(\hat{y}_i) = -\sum_{i=1}^C y_i \frac{\partial \log(\hat{y}_i)}{\partial z_j} = -\sum_{i=1}^C \frac{y_i}{\hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_j}$$

$$= -\frac{y_j}{\hat{y}_j} \frac{\partial \hat{y}_j}{\partial z_j} - \sum_{i \neq j}^C \frac{y_i}{\hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_j} = -\frac{y_j}{\hat{y}_j} \hat{y}_j (1 - \hat{y}_j) + \sum_{i \neq j}^C \frac{y_i}{\hat{y}_i} \hat{y}_i \hat{y}_j$$

$$= -y_j + y_j \hat{y}_j + \sum_{i \neq j}^C y_i \hat{y}_j = -y_j + \hat{y}_j \sum_{i=1}^C y_i = \hat{y}_j - y_j$$

$$\frac{dL}{dz} = \hat{y} - y$$

Relationship to Logistic Regression

• Logistic regression is a special case of CE+Softmax classification when $\mathcal{C}=2$

Convince yourself ©

Multi-Layer Perceptron

Linear Models

• Is linear model a good for all?

Nonlinear Models

• nth-degree Polynomial regression

$$f(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots + w_n x^n$$

Polynomals as Neural Network

$$f(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots + w_n x^n$$

- Feature engineering is hard
- Can we make it non-linear w/o feature engineering?

$$f(x) = w_1 w_2 x$$

Is it non-linear in x?

Using non-linear activation function

$$f(x) = w_2 a(w_1 x)$$

$$a(x) = \max(0, x)$$
 (Rectifier Linear Unit)

$$a(x) = \frac{1}{1 + e^{-x}}$$
 (Sigmoid)

• AKA, Multi-Layer Perceptron

a: element-wise operation

• AKA, Multi-Layer Perceptron

Regression with two layers MLP

$$D = \{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$$

$$x^{(i)} \in \mathbb{R}^{d}, y^{(i)} \in \mathbb{R}, X \in \mathbb{R}^{N \times d}, Y \in \mathbb{R}^{N}$$

$$\theta = \{W_{1}, W_{2}\}, W_{1} \in \mathbb{R}^{h \times d}, W_{2} \in \mathbb{R}^{1 \times h}$$

$$f_{\theta}(x) = W_{2}\sigma(W_{1}x)$$

$$f_{\theta} : \mathbb{R}^{d} \to \mathbb{R}$$

$$L(\theta) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - f_{\theta}(x^{(i)}))^{2} = \frac{1}{2} (Y - \sigma(W_{1}X^{\mathsf{T}})^{\mathsf{T}} W_{2}^{\mathsf{T}})^{\mathsf{T}} (Y - \sigma(W_{1}X^{\mathsf{T}})^{\mathsf{T}} W_{2}^{\mathsf{T}})$$

Regression with two layers MLP

$$D = \{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$$

$$x^{(i)} \in \mathbb{R}^{d}, y^{(i)} \in \mathbb{R}, X \in \mathbb{R}^{N \times d}, Y \in \mathbb{R}^{N}$$

$$\theta = \{W_{1}, W_{2}\}, W_{1} \in \mathbb{R}^{h \times d}, W_{2} \in \mathbb{R}^{1 \times h}$$

$$f_{\theta}(x) = W_{2}\sigma(W_{1}x)$$

$$f_{\theta} : \mathbb{R}^{d} \to \mathbb{R}$$

- 1. Can you take the gradients?
- 2. Does it have a closed form solution?
- 3. Is it a convex function?

$$L(\theta) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - f_{\theta}(x^{(i)}))^{2} = \frac{1}{2} (Y - \sigma(W_{1}X^{\mathsf{T}})^{\mathsf{T}} W_{2}^{\mathsf{T}})^{\mathsf{T}} (Y - \sigma(W_{1}X^{\mathsf{T}})^{\mathsf{T}} W_{2}^{\mathsf{T}})$$

The Universal Approximator

- A single hidden layer neural network can approximate any continuous function arbitrarily well, given enough hidden units.
- This holds for many different activation functions, e.g. sigmoid, tanh, ReLU, etc.

$$w = 5, b = 0$$

$$w = 5, b = 3$$

$$w = 10, b = -7$$

$$w = 100, b = -20$$

$$w_1 = 100, b_1 = -20$$

 $w_2 = 100, b_2 = -40$
 $w_3 = 1, w_4 = -1$

$$w_1 = 100, b_1 = -60$$

 $w_2 = 100, b_2 = -80$
 $w_3 = 2, w_4 = -2$

The Universal Approximator in 2D

The Universal Approximator in 2D

- Single layer might be enough, but it requires 'enough' neurons.
- Informally, 'shallower and wider' networks require exponentially more hidden units to compute 'narrower and deeper' neural networks
 - <u>Lecture 2 | The Universal Approximation Theorem YouTube</u>