Deep Learning

Eunbyung Park

Assistant Professor

School of Electronic and Electrical Engineering

Eunbyung Park (silverbottlep.github.io)

202
=l
TH
o
2kl

‘ 1398 ;

https://silverbottlep.github.io/

Linear Regression

Linear Models

Linear Models

_— T

Linear (comes from ‘Line’) Mathematical models

Regression

* Regression is a (statistical) method of
fitting curves through data points

* The term “regression” was coined by
Francis Galton in the 19t century to
describe a biological phenomenon.

* The taller the parents, the taller the
children, but shorter than their parents

* The shorter the parents, the shorter the
children, but taller than their parents

* “regression to the mean”

JMPer Cable Summer 98: Why is it called Regression? (jhsph.edu)

http://www.biostat.jhsph.edu/courses/bio653/misc/JMPer%20Cable%20Summer%2098%20Why%20is%20it%20called%20Regression.htm

1D Linear Regression
* Fitting a line that explains the data

1D Linear Regression

* Fitting a line that explains the data
 Given a new data x', predict y’

1D Linear Regression

* Fitting a line that explains the data

{(x(i),y(i))}

fx) =wx

e What is the best line?

* Aline that is close to all data points
‘on average’

 Mean squared error (MSE) loss

N
1

w* = arg min Ez(y(i) — Wx(i))2

w :
1=1

1D Linear Regression

N
1 . .
L(W) — Ez(y(l) — Wx(l))z
=1

w” = arg min L(w)
w

* The least squares method
* L2 Loss function

» N and {(x¥,y®)} are constants (given), and only w is ‘unknown’
* We are going to find w that minimizes the loss function L(w)

* Then, how?

1D Linear Regression

N N
L(w) = %E(y(i) _ Wx(i))z — %E(y(i))z 4 WZ(x(i))z _ wa(i)y(i)
=1 i=1

A g

L(w) is a quadradic function
How to minimize a quadratic function?

1D Linear Regression

* Minimizing a quadratic function
* Take a derivative, and set it to zero

L(w) |

Does it have a solution?
If so, is it an unique solution?

1D Linear Regression

N
1 . |
L(w) = 52@(” — wx®)?
=1

N
dL(w) . o
L'(w) = _ z(ya) — wx®)x® =
dw -
N 5 (D (D

M Y ICIO)E

1D Linear Regression

* It is the simplest possible neural network

(O

2D Linear Regression

Z = sz‘l‘le

N
A 1 . . .
’ L(wy,wy) = EZ(Z(‘) — wyx® — le(‘))z
i=1

2D Linear Regression

Z = WyX +W1y

, N , _— N y®z® — W, YN zOy®
L(wy,wr) = Ez(z(‘) — wox® — wyy®) ' YL (y®)
=1
doL : . , , l 1 x W70 — Wq _1 x(l)y(l)
- Z(Z(‘) —wpx® —wyO)(—yD) =0 w; = N (x0)2
L~
T = 2(2@ — wyx® — W,y) (=x®) = 0

=1

2D Linear Regression

* Single-layer neural network w/ two input units

Z = WyX + w1y

Bias term and Higher Dimension

y = wix +wg

Z:W2x+W1y+WO

Linear Algebra

* Linear algebra comes to the rescue!
* Problem setup

D ={(x®,y@®), .., (x™), y ")}

x® e R, y® e R,w e R? - £ W
X e RV*e y e RN

1
L(w) = > Y —Xw)T (Y — Xw)

1w n
. N 2 =
— zz(y(” —wTx®) o
=1

(Y — Xw)

y® — yTx®

-

(Y — Xw) € RN

Y -—Xw)"(Y —Xw) eR

Linear Algebra

* Linear algebra comes to the rescue!

* Problem setup
arg min L(w)
D = {(x® yD) _ (x® @) w
.{(x,y.),,(x,y)} 1 oo T TyT TyT
x® e R yD e Rw e R? L(W)=§(Y Y-Y'Xw—-w' X'Y+w' X' Xw)
X e RV*4y e RN

1
) = STV = 2V TXw + wTXTXw)
L(w) = > Y —Xw)T (Y — Xw)

VLW) ==Y X+ X" Xw=0

N
1 : N 2
_ - @ — T @
zz(y wTx®) w*=XTX)"lyTx = (XTx) 1xTy
=1

(normal equation)

Shallow Neural Network

* It is a single layer neural network

What's Wrong with It?

w* = (XTX)"1xTy

Gradient Descent

* For convex optimization, it is guaranteed to converge to global optima

N
1 . . 1
L(w) = 52@(” — wa@)2 = (Y — Xw)T(Y — Xw)
=1

N

dL . . .

o= Z(WTx(‘) —yW)x® = XT(Xw — Y)
i=1

a dL
wi=w—al -

(descent) (step-size) (gradient)

Linear Classification

- Linear Models and Multi-Layer Perceptron-

Linear Classification

* Linear decision boundary

x+b=0

W1 X4 +W2x2 +b=0

W1X1 + WyXy +W3x3 +b =0

Rosenblatt's Perceptron

* A single perceptron as a linear decision boundary (hyperplane)

1, wlx >0
0, wlix <0

Rosenblatt, Psychological Review 1958

Perceptron

* Weight vector is orthogonal to the hyperplane

wix—b=0

Perceptron
* Find a separating hyperplane

ﬂk

Perceptron

* Find a separating hyperplane

Angles between all positive examples x() and
w should be less then 90 degree

Angles between all negative examples x() and
w should be greater then 90 degree

Perceptron Learning Algorithm

* Find the w vector that perfect

y classify training examples

Algorithm

: Perceptron Learning Algorithm

P « inputs

N <« inputs

Initialize w
while !conv

Hxel

with label 1:
with label 0
randomly;
ergence do

Pick random x€ PUN :

and w.x < (0 then

‘ W=W-++X;

end

if xe N and w.x >0 then

‘ W=W—X |

end
end

//the algorithm converges when all the
inputs are classified correctly

Perceptron Learning Algorithm

* Find a separating hyperplane

1 4
@ O

. Wnew .

Problems

e Which one is better?

Problems

 What about not linearly separable cases?

4)

Logistic Function (aka Sigmoid)

e Squeezing the output of a ‘linear equation” between 0 and 1

e

1, x>0 B 1
o(x) = 1+e*

Logistic Regression

* Using the ‘logistic function’ to
squeeze the output of a ‘linear
equation’

co(w'x) €[0,1] (w/sigmoid)
« step(w'x) € {0,1} (thresholding)

* So, now it’s more like probability
* p(y =1lx;w) = a(wTx)
c p(y=0|x;w) =1—0(w'x)

MSE Loss for Logistic Regression

e Can we apply MSE loss function to logistic regression?

D = {(x(l); y(l)): rery (x(N)’y(N))}
x® e R y® € {0,1},w € R?
X e RV)y € {0,1}V

N
1 . N 2
MSE(w) = 52(31(‘) — o(wTx®))
=1

MSE Loss for Logistic Regression

e Can we apply MSE loss function to logistic regression?

D = {(x(l); y(l)): rery (x(N)’y(N))}
x® e R y® € {0,1},w € R?
X e RV)y € {0,1}V

N
1 . L2 : .

MSE(w) = _E(y(l) — a(wa(‘))) It is not a convex function
2 = (convince yourself)

Log Loss (Binary Cross Entropy)

D = {(x(l); y(l))» rery (x(N)’y(N))}
x® e R%,yW € {0,1},w € RY
X e RV)y € {0,1}V

9O = o'(WTx(i))

N
b = 3y a(50) + 1y s -

=1

y®)

0 1\ I

—log(x)

Log Loss (Binary Cross Entropy)

e Can we apply MSE loss function to logistic regression?

y(l) — O'(WTX(i)) 2
: |
BCE(w) = — Z yDlog(®) + (1 —y@)log(1 — V)
= \
—log(1-9%), y®=0
—log(®), yW =1
0 1\ i

—log(x)

Log Loss (Binary Cross Entropy)

e Can we apply MSE loss function to logistic regression?

y(l) — O'(WTX(i)) 2
: |
BCE(w) = — Z yDlog(®) + (1 —y@)log(1 — V)
= \
—log(1—-9%), y®=0
—log(®), y® =1
0 1\ i

It is a convex function
(convince yourself) —log(x)

Derivative of Sigmoid Function

1
14+e™*
do(x) e * B 1
dx (1+e*)2 (1+e*)(1+e*)

o(x) =

—X

=0o(x)(1—-0a(x))

BCE Loss

N
BCEGH) = -)0 log(50) + (1 - yO)og(1 — 39)

=1
N .
OBCE(w) z OBCE(w) 99 ®
ow; L 0y® ow;
ST 1 0y
— _ (i) — y@®
). (wo Ot o-y)> ow;
1=1

<

N
_ E(y(o —y®) xj@
=1

1 1 W) o N
("(i) yOt = (- Y(l))>?(‘)(1 -99)x"

5}(1') = O'(WTx(i))

BCE Loss

N
BCE(w) = — 2 y©log(9®) + (1 - y)log(1 —3®) 5O = g(wTx®)

=1

N
dBCE(w) . . :
=§ NOPNONNO
ow; .1(y Y)x]
1=

J

dBCE(w)
ow

=XT(ac(Xw) —Y)

Can you solve this as we did before?
(take the gradients, and set to zero)

BCE Loss

N
BCE(w) = — 2 ylog(9®) + (1 - y©)log(1 - 5®) 5O = g(wTx®)

=1

N

dBCE(w) . . :

=N (50 -) = 0

dw; .1(y Y)x]
1=

dBCE(w)
ow

=X"(c(Xw)—-Y) =0

N
Wi = w; —a z(y@ — y) x®
i=1

wi=w—aX (c(Xw) —Y)) (Gradient Descent)

Probabilistic Interpretation

Maximum Likelihood Estimation (MLE)

Probability Likelihood
A (probability density/mass) function A (probability density /mass) function of
of the data given the fixed parameters parameters given the data
1 _(x—p)* 1 _(x—w)*
p(x;u,0) = e 207 L(u,0;x) = e 207

202 2o

Maximum Likelihood Estimation (MLE)

Probability Density Function Likelihood

p(a < x < b)

Maximum Likelihood Estimation (MLE)

Finding the parameters that maximize the probability (density/mass)
function

|.1.D assumption

i/

argmax L(0;x) = argmax | |p(x;;0)
6

0 i=1

N
= arg max log 1_[p(x;; 0)
6 ;
=1

D = {xl,xz,x3, ...,xN}

N
= arg maxz log p(x;;0)
6 A
1=1

Maximum Likelihood Estimation (MLE)

* Finding the parameters that maximize the probability (density/mass)
function

N
arg maxz log p(x;; 0)
6 4
i=1

N 2
| (1 _(xi—LZL))
= arg maxz og e 20
0 — V2mo?
N

N2
=argmax) — b — 1) — log (\/ Znaz)

2072
0 i=1

D = {xl,xz,x3, ...,xN}

Maximum Likelihood Estimation (MLE)

* Finding the parameters that maximize the probability (density/mass)
function

N

(i = 1)
arg max) — lzaéu —log(\/Znaz)

o=

N

1 G —w?
du P — log (\/ 27102)

=1
N

| D ={x1,x2,x3, ...,xN}
i=1 .

| &
xl Np = w =_zxi
=1

"Mz
=

Maximum Likelihood Estimation (MLE)

* Finding the parameters that maximize the probability (density/mass)
function

S (g —)2

argmax) —— ——— log (\/ 27702)

. D ={x1,x2,x3, ...,xN}
i=1

MLE for Linear Regression

* Finding the parameters that maximize '‘conditional likelihood'

Assumptionl: p(y|x) is a normal distribution

Assumption2: I.I.D

N T \2
N 1 (ri—6"xy)
L(H) — lo |xi: 0) = lo (e 202)
21 gp(yilxi; 0) E 08\ 70—

N
1
= —ﬁZ(yi — 0"x;)?* — Nlog (\/ 2n02)
i=1

o = 1, we recover MSE Loss

MLE for Logistic Regression

* Finding the parameters that maximize '‘conditional likelihood'

Assumptionl: p(y|x) is a Bernoulli distribution

Assumption2: I.I.D

N

N
_ . _ YYi(1 — Nt
L(O) = ; log p(y;|x;;0) = Zizllog a(0"x;)Y (1 a(HTxl))
N
— 2 yiloga(87x;) + (1 —y) log(1—a(67x;))
i=1

We recover BCE Loss

Multiclass Classification

Multiclass (Multinomial) Classification

* Cross Entropy Loss
e BCE is a special case of CE (two classes)

i=1c=1 0
N 2 0
BCE(w) = —Z Eyc(l) log(j?c(i)) y® = 1 (one-hot vector)
i=1c=1 :
0.

Softmax Function

e ‘Soft’ ‘Max’ function

 [1,2,3,2,1] - [0.0674,0.183,0.498,0.183,0.0674]

softmax: R¢ —

[0,1]¢

|softmax(x)| =1

softmax(x); =

softmax(x) =

e*i

Zlczl exl

e*1

iC=1 e
eXz

e*c

Zlczl exl

€ [0,1]¢

softmax

Derivative of the Softmax Function

e’

Vi =
x.
i=1 €71

0y |yi(1—yp), =]

hd T v (10 = Y — v
0x; {_Yin: L#] yi(1 =13 =)
dy [)’1(1 - Y1) Y1Y4

Dol oy vy

Convince yourself ©

Cross-Entropy + Softmax

c
Lw) ==Y yilog@) Fimsr—z Z=Wx
i=1 j=1¢
9y _ (1 =730, i=j
ox; (=Y, L#]
c c R c R
oL _izy log(§,) = zy dlog(¥;) Vi 09
= i i) = — i ==) ==
aZj aZJ = = aZ] o Vi aZJ
) 39 € oo c
j 9Y;j Yi 0Yi Vi . ~ Yi o A
LI NUB_ A gy Y Ygs
Vi 0z; — Vi 0z; y;7’ ! — Y l

c c
= —Yj‘l'y]'f’j"'Z)’if’j = _yj+5;jzyi =Y~ Yj

=] =1

Relationship to Logistic Regression

* Logistic regression is a special case of CE+Softmax classification when C = 2

Convince yourself ©

Multi-Layer Perceptron

Linear Models

* Is linear model a good for all?

Nonlinear Models

* nth-degree Polynomial regression

20
il

— T"ul:h
= Ectimate
L] f— I:E

f(x) =wy +wix + wyx? + wax3 + -+ wyx™

=10 4

Polynomals as Neural Network

f(x) =wy +wix + wyx? + wax® + -+ + wyx™

* Feature engineering is hard

e Can we make it non-linear w/o feature
engineering?

Feed-Forward Neural Network

A
X =® Wy W, x

f(x) = wiw,x

Is it non-linear in x?

Feed-Forward Neural Network

* Using non-linear activation function

" /\ .
@ > a() "w,a(wyx)

f(x) = waa(wyx)

(

a(x) = max(0, x) (Rectifier Linear Unit)

a(x) = 1+ % (Sigmoid)

Feed-Forward Neural Network

* AKA, Multi-Layer Perceptron

Feed-Forward Neural Network

* AKA, Multi-Layer Perceptron

Feed-Forward Neural Network

* Regression with two layers MLP

D = {(x®,y®), .., (x™, y ™}

x® e R yW e R X e RV Yy e RV
0 = {Wy, W,}, W, € R4 W, € R*"
fo(x) = Wo(W;x)

forRY - R

N
L(O) = %Z(y(i) — fo (x(i)))z = %(Y — U(W1XT)TW2T)T(Y — U(W1XT)TW2T)
=1

Feed-Forward Neural Network

* Regression with two layers MLP

_ (1) 4, (D (N) (V)
D {(x Y),___,(x &)} 1. Canyou take the gradients?

x® e R%,yD e R X € RV Yy € RV 2. Does it have a closed form solution?
0 = {w,, W,}, Wy € R4 W, e R*" 3. lIsita convex function?

fo (x) = Wro(Wyx)

forRY - R

N
L(O) = %Z(y(i) — fo (x(i)))z = %(Y — U(W1XT)TW2T)T(Y — U(W1XT)TW2T)
=1

The Universal Approximator

The Universal Approximation Theorem

* A single hidden layer neural network can approximate any continuous
function arbitrarily well, given enough hidden units.

* This holds for many different activation functions, e.g. sigmoid, tanh, RelLU,
etc.

The Universal Approximation Theorem

™
i

-
v

The Universal Approximation Theorem

w=5b=0

wx + b
O ® °

w=55b=3

w =100,b = -20

-

0

The Universal Approximation Theorem

wy = 100,b, = —20

W3 = 1,W4_ = -1

W, = 100, b1 = —60
Wy = 100, bz = —80
W3 = 2, Wy = —2

The Universal Approximation Theorem

The Universal Approximation Theorem

o

The Universal Approximator in 2D

[1.0
o8
- 0.6

[0.4

0.2
- 0.0
10

0
20 4
® e 0 2 2
1 1wy o

The Universal Approximator in 2D

The Universal Approximation Theorem

* Single layer might be enough, but it requires ‘enough’ neurons.

* Informally, ‘shallower and wider’ networks require exponentially more
hidden units to compute ‘narrower and deeper’ neural networks

e Lecture 2 | The Universal Approximation Theorem - YouTube

https://www.youtube.com/watch?v=lkha188L4Gs

	Deep Learning��- Linear Models and Multi-Layer Perceptron-
	Linear Regression
	Linear Models
	Regression
	1D Linear Regression
	1D Linear Regression
	1D Linear Regression
	1D Linear Regression
	1D Linear Regression
	1D Linear Regression
	1D Linear Regression
	1D Linear Regression
	2D Linear Regression
	2D Linear Regression
	2D Linear Regression
	Bias term and Higher Dimension
	Linear Algebra
	Linear Algebra
	Shallow Neural Network
	What’s Wrong with It?
	Gradient Descent
	Linear Classification��- Linear Models and Multi-Layer Perceptron-
	Linear Classification
	Rosenblatt’s Perceptron
	Perceptron
	Perceptron
	Perceptron
	Perceptron Learning Algorithm
	Perceptron Learning Algorithm
	Problems
	Problems
	Logistic Function (aka Sigmoid)
	Logistic Regression
	MSE Loss for Logistic Regression
	MSE Loss for Logistic Regression
	Log Loss (Binary Cross Entropy)
	Log Loss (Binary Cross Entropy)
	Log Loss (Binary Cross Entropy)
	Derivative of Sigmoid Function
	BCE Loss
	BCE Loss
	BCE Loss
	Probabilistic Interpretation
	Maximum Likelihood Estimation (MLE)
	Maximum Likelihood Estimation (MLE)
	Maximum Likelihood Estimation (MLE)
	Maximum Likelihood Estimation (MLE)
	Maximum Likelihood Estimation (MLE)
	Maximum Likelihood Estimation (MLE)
	MLE for Linear Regression
	MLE for Logistic Regression
	Multiclass Classification
	Multiclass (Multinomial) Classification
	Softmax Function
	Derivative of the Softmax Function
	Cross-Entropy + Softmax
	Relationship to Logistic Regression
	Multi-Layer Perceptron
	Linear Models
	Nonlinear Models
	Polynomals as Neural Network
	Feed-Forward Neural Network
	Feed-Forward Neural Network
	Feed-Forward Neural Network
	Feed-Forward Neural Network
	Feed-Forward Neural Network
	Feed-Forward Neural Network
	The Universal Approximator
	The Universal Approximation Theorem
	The Universal Approximation Theorem
	The Universal Approximation Theorem
	The Universal Approximation Theorem
	The Universal Approximation Theorem
	The Universal Approximation Theorem
	The Universal Approximator in 2D
	The Universal Approximator in 2D
	The Universal Approximation Theorem

