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Various Types of Convolutions



Normal Convolutional Layer

Depthwise separable convolutions for machine learning - Eli Bendersky's website (thegreenplace.net)

https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/


1x1 Convolution (a.k.a Pointwise Convolution)

A Comprehensive Introduction to Different Types of Convolutions in Deep Learning | by Kunlun Bai | Towards Data Science

3x3 Convolution 1x1 Convolution

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215


Separable Convolutions

A Basic Introduction to Separable Convolutions | by Chi-Feng Wang | Towards Data Science

• Spatial separable convolution

https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728


Separable Convolutions

A Basic Introduction to Separable Convolutions | by Chi-Feng Wang | Towards Data Science

• Spatial separable convolution

https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728


Separable Convolutions

Flattened convolutional neural networks for feedforward acceleration, Jin et al, ICLR Workshop 2015

• Flattened convolution

≈ × ×



Depthwise Convolution

Depthwise separable convolutions for machine learning - Eli Bendersky's website (thegreenplace.net)

https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/


Depthwise Separable Convolution

Depthwise separable convolutions for machine learning - Eli Bendersky's website (thegreenplace.net)

https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/


Depthwise Separable Convolutional Layer

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, Howard et al, CVPR 2017

𝑀𝑀: 128 The number of input channels 
𝑁𝑁: 128 The number of output channels
𝐷𝐷𝐾𝐾: 3 The size of a filter
𝐷𝐷𝐹𝐹: 64 The size of a feature map

• # parameters

Standard Convolution Depthwise Separable Convolution



Depthwise Separable Convolutional Layer

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, Howard et al, CVPR 2017

𝑀𝑀: 128 The number of input channels 
𝑁𝑁: 128 The number of output channels
𝐷𝐷𝐾𝐾: 3 The size of a filter
𝐷𝐷𝐹𝐹: 64 The size of a feature map

• # parameters

𝐷𝐷𝐾𝐾𝐷𝐷𝐾𝐾𝑀𝑀𝑁𝑁
= 147,456

Standard Convolution

𝐷𝐷𝐾𝐾𝐷𝐷𝐾𝐾𝑀𝑀 + 𝑀𝑀𝑁𝑁
= 17,536

Depthwise Separable Convolution



Depthwise Separable Convolutional Layer

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, Howard et al, CVPR 2017

• Computational Cost (FLOPS)

Standard Convolution Depthwise Separable Convolution

𝑀𝑀: 128 The number of input channels 
𝑁𝑁: 128 The number of output channels
𝐷𝐷𝐾𝐾: 3 The size of a filter
𝐷𝐷𝐹𝐹: 64 The size of a feature map



Depthwise Separable Convolutional Layer

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, Howard et al, CVPR 2017

• Computational Cost (FLOPS)

𝐷𝐷𝐾𝐾𝐷𝐷𝐾𝐾𝑀𝑀𝑁𝑁𝐷𝐷𝐹𝐹𝐷𝐷𝐹𝐹
= 603,979,776

Standard Convolution

𝐷𝐷𝐾𝐾𝐷𝐷𝐾𝐾𝑀𝑀𝐷𝐷𝐹𝐹𝐷𝐷𝐹𝐹 + 𝑀𝑀𝑁𝑁𝐷𝐷𝐹𝐹𝐷𝐷𝐹𝐹
= 71,827,456

Depthwise Separable Convolution

𝑀𝑀: 128 The number of input channels 
𝑁𝑁: 128 The number of output channels
𝐷𝐷𝐾𝐾: 3 The size of a filter
𝐷𝐷𝐹𝐹: 64 The size of a feature map

𝐷𝐷𝐾𝐾𝐷𝐷𝐾𝐾𝑀𝑀𝐷𝐷𝐹𝐹𝐷𝐷𝐹𝐹 + 𝑀𝑀𝑁𝑁𝐷𝐷𝐹𝐹𝐷𝐷𝐹𝐹
𝐷𝐷𝐾𝐾𝐷𝐷𝐾𝐾𝑀𝑀𝑁𝑁𝐷𝐷𝐹𝐹𝐷𝐷𝐹𝐹

=
1
𝑁𝑁

+
1
𝐷𝐷𝐾𝐾2



MobileNets

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, Howard et al, CVPR 2017

• ConvNet w/ depthwise separable convolution



Grouped Convolution

Grouped Convolution - GeeksforGeeks

• Convolutions in parallel
• It was first Introduced in AlexNet to utilize the 2 GPUs distributed training
• 1.5GB x 2 = 3GB

https://www.geeksforgeeks.org/grouped-convolution/


Grouped Convolution

ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NeurIPS 2012

• Convolutions in parallel
• It was first Introduced in AlexNet to utilize the 2 GPUs distributed training
• 1.5GB x 2 = 3GB



Shuffled Convolution

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices, Zhange et al, CVPR 2018

• To eliminate a side effect of the grouped convolutions
• The outputs from a certain channel are only derived from a small fraction of input 

channels



Shuffled Convolution

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices, Zhange et al, CVPR 2018

• ShuffleNet



Dilated Convolution

Review: DilatedNet — Dilated Convolution (Semantic Segmentation) | by Sik-Ho Tsang | Towards Data Science

• To aggregate multi-scale contextual information without losing resolution

Standard Convolution (l=1) Dilated Convolution (l=2)

https://towardsdatascience.com/review-dilated-convolution-semantic-segmentation-9d5a5bd768f5


Dilated Convolution

Multi-Scale Context Aggregation by Dilated Convolutions, Yu et al, ICLR 2016

• To aggregate multi-scale contextual information without losing resolution

𝐹𝐹1 = DilatedConv(𝐹𝐹0, 𝑙𝑙 = 1) 𝐹𝐹2 = DilatedConv(𝐹𝐹1, 𝑙𝑙 = 2) 𝐹𝐹3 = DilatedConv(𝐹𝐹2, 𝑙𝑙 = 4)

Receptive Fields



Transposed Convolution

Transposed Convolutions explained with… MS Excel! | by Thom Lane | Apache MXNet | Medium

https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8


ImageNet Large Scale Visual Recognition Challenge

(ILSVRC)



ILSVRC

• ImageNet is an image database organized according to the WordNet 
hierarchy (nouns)

• 1000 object classes
• About 1.2M training images, 50K validation images, 100K test images

• The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
• 8 years history (2010 – 2017)
• It was the most powerful driving force to facilitate deep learning research



Classification Results

Beyond ILSVRC workshop 2017 (image-net.org)

https://image-net.org/challenges/beyond_ilsvrc


Classification Results

Beyond ILSVRC workshop 2017 (image-net.org)

AlexNet

ZFNet

GoogleNet
VGGNet

ResNet

Trimps-Soushen
(Inception + WRN)

Human: 0.05

SENet

https://image-net.org/challenges/beyond_ilsvrc


AlexNet

• The winner of ILSVRC 2012
• It changed the entire computer vision research



ZFNet

• The winner of ILSVRC 2013
• The network architectures were developed by using the visualization 

techniques
• Visualizing and Understanding Convolutional Networks, Zeiler et al, ECCV 2014

• Reduced the 1st layer filter size from 11x11 to 7x7
• 1st layer stride from 4 -> 2



VGGNet

Architecture comparison of AlexNet, VGGNet, ResNet, Inception, DenseNet | by Khush Patel | Towards Data Science

https://towardsdatascience.com/architecture-comparison-of-alexnet-vggnet-resnet-inception-densenet-beb8b116866d


VGGNet

Architecture comparison of AlexNet, VGGNet, ResNet, Inception, DenseNet | by Khush Patel | Towards Data Science

https://towardsdatascience.com/architecture-comparison-of-alexnet-vggnet-resnet-inception-densenet-beb8b116866d


VGGNet

Architecture comparison of AlexNet, VGGNet, ResNet, Inception, DenseNet | by Khush Patel | Towards Data Science

https://towardsdatascience.com/architecture-comparison-of-alexnet-vggnet-resnet-inception-densenet-beb8b116866d


GoogLeNet

• Winner of ISLVRC 2014
• Also called ‘Inception’ Max pooling

Concatenation

Convolution

Going deeper with convolutions, Szegedy et al, CVPR 2015



GoogLeNet

• Inception module

Going deeper with convolutions, Szegedy et al, CVPR 2015



GoogLeNet

• ILSVRC 2014 classification results

Going deeper with convolutions, Szegedy et al, CVPR 2015



ResNet

• The winner of ILSVRC 2015
• Residual building block

Deep residual learning for image recognition, He et al, CVPR 2016



ResNet

Deep residual learning for image recognition, He et al, CVPR 2016



ResNet

• Training on ImageNet

Deep residual learning for image recognition, He et al, CVPR 2016



ResNet

• ILSVRC 2015 classification results

Deep residual learning for image recognition, He et al, CVPR 2016



Wide Residual Networks (WRNs)

• Diminishing feature reuse
• The circuit complexity theory says that shallow circuits can require exponentially 

more parameters than deeper ones.
• However, in the residual block w/ identity mapping, there is nothing to force the 

gradients to go through residual block weights
• It is possible that there is there is either only a few blocks that learn useful 

representations or many blocks share very little information with small contribution

• ‘Widening’ of ResNet provides a much more effective way of improving 
performance

• 50 times less layers and being more than 2 times faster

Wide residual networks, Zagoruyko et al, BMVC 2017



Wide Residual Networks (WRNs)

Wide residual networks, Zagoruyko et al, BMVC 2017



Wide Residual Networks (WRNs)

Wide residual networks, Zagoruyko et al, BMVC 2017

• ILSVRC classification results (single crop)



ResNeXt

Aggregated residual transformations for deep neural networks, Sie et al, BMVC 2017

• The second ranked in ILSVRC 2016
• ‘Cardinality’ matters (the number of transformations in the layers)
• next dimension -> cardinality



Ensemble of Diverse Architecture

• The winner of ILSVRC 2016
• Trimps-Soushen Team

Review: Trimps-Soushen — Winner in ILSVRC 2016 (Image Classification) | by Sik-Ho Tsang | Towards Data Science

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-dfbc423111dd


Ensemble of Diverse Architecture

• ILSVRC classification results

Review: Trimps-Soushen — Winner in ILSVRC 2016 (Image Classification) | by Sik-Ho Tsang | Towards Data Science

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-dfbc423111dd


DenseNet

• The feature-maps of all preceding layers are used as inputs
• For 𝐿𝐿 layers block, 𝐿𝐿(𝐿𝐿+1)

2
direct connections

Densely connected convolutional networks, Huang et al, CVPR 2017



DenseNet

• The feature-maps of all preceding layers are used as inputs
• For 𝐿𝐿 layers block, 𝐿𝐿(𝐿𝐿+1)

2
direct connections

Densely connected convolutional networks, Huang et al, CVPR 2017

ResNet DenseNet



DenseNet

• Parameter efficient

Review: DenseNet — Dense Convolutional Network (Image Classification) | by Sik-Ho Tsang | Towards Data Science

https://towardsdatascience.com/review-densenet-image-classification-b6631a8ef803


DenseNet

• Parameter efficient

Review: DenseNet — Dense Convolutional Network (Image Classification) | by Sik-Ho Tsang | Towards Data Science

https://towardsdatascience.com/review-densenet-image-classification-b6631a8ef803


DenseNet

• Parameter efficient

Densely connected convolutional networks, Huang et al, CVPR 2017



Squeeze-and-Excitation Networks

• The winner of ILSVRC 2017
• SE Block

• Easily integrated into popular convolutional modules, e.g. ResNet, Inception, etc.
• A ‘light weight’ gating mechanism to model channel-wise relationships

Squeeze-and-excitation networks, Hu et al, CVPR 2018



Squeeze-and-Excitation Networks

• SE Block

Squeeze-and-excitation networks, Hu et al, CVPR 2018



Squeeze-and-Excitation Networks

Squeeze-and-excitation networks, Hu et al, CVPR 2018



Squeeze-and-Excitation Networks

Squeeze-and-excitation networks, Hu et al, CVPR 2018

• ILSVRC classification results



The Key Ingredients of Training CNNs



Drop-out/Drop-path



Dropout
• Turning off neurons w/ given probability (e.g. 0.5)
• Every iterations, new network architectures emerge

Improving neural networks by preventing co-adaptation of feature detectors, hinton et al, arXiv 2012



Dropout
• A simple way to train deep neural 

networks for improving generalization 
performance

• Avoiding co-adaptations: a hidden unit 
cannot rely on other hidden units being 
present

• Model averaging

Improving neural networks by preventing co-adaptation of feature detectors, hinton et al, arXiv 2012



Stochastic Depth (a.k.a DropPath)
• Training short networks and use deep networks at test time
• During training, randomly drop a subset of layers and bypass them with identity 

function

Deep Networks with Stochastic Depth, Huang et al, ECCV 2016



Stochastic Depth (a.k.a DropPath)
• Linearly decaying ‘drop probability’

• Later layers will be dropped more frequently

Deep Networks with Stochastic Depth, Huang et al, ECCV 2016



Stochastic Depth (a.k.a DropPath)

Deep Networks with Stochastic Depth, Huang et al, ECCV 2016



Normalization Methods



Batch Normalization
• Normalizing training sets

Deep Learning Specialization - DeepLearning.AI

𝑥𝑥1

𝑥𝑥2

https://www.deeplearning.ai/program/deep-learning-specialization/


Batch Normalization
• Subtracting the mean

Deep Learning Specialization - DeepLearning.AI

𝑥𝑥1

𝑥𝑥2

𝜇𝜇1 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥1
(𝑖𝑖)

𝑥𝑥1
(𝑖𝑖) ≔ 𝑥𝑥1

𝑖𝑖 − 𝜇𝜇1

https://www.deeplearning.ai/program/deep-learning-specialization/


Batch Normalization
• Divide by standard deviation

Deep Learning Specialization - DeepLearning.AI

𝑥𝑥1

𝑥𝑥2

𝜎𝜎12 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥1
𝑖𝑖 2

𝑥𝑥1
(𝑖𝑖) ≔ 𝑥𝑥1

𝑖𝑖 /𝜎𝜎1

𝑥𝑥1 ~𝑁𝑁(0,1)
𝑥𝑥2 ~𝑁𝑁(0,1)

https://www.deeplearning.ai/program/deep-learning-specialization/


Batch Normalization
• Standardization

𝑧𝑧 =
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

𝑧𝑧 ~𝑁𝑁(0,1)

mean

Standard deviation



Batch Normalization
• When un-normalized, the loss surface is more skewed (elongated)

• Input feature scales are very different each other



Batch Normalization

Batch normalization: accelerating deep network training by reducing internal covariate shift, Ioffe et al, ICML 2015

• Normalizing inputs (also hidden 
units) based on mini-batch 
statistics

• Computing mean and variance 
given the current batch

• During testing, we may not have 
enough batch size for this (e.g. 1 
batch), using mean and variance 
from the training phase



Batch Normalization

Batch normalization: accelerating deep network training by reducing internal covariate shift, Ioffe et al, ICML 2015



Batch Normalization in CNN

𝑀𝑀: 128 The number of input channels 
𝐷𝐷𝐹𝐹: 64 The size of a feature map
𝐵𝐵 : 32 The mini-batch size

𝜇𝜇 ∈ ℝ?,𝜎𝜎2 ∈ ℝ?



Batch Normalization in CNN

𝑀𝑀: 128 The number of input channels 
𝐷𝐷𝐹𝐹: 64 The size of a feature map
𝐵𝐵 : 32 The mini-batch size

𝜇𝜇 ∈ ℝ128,𝜎𝜎2 ∈ ℝ128



Why Batch Normalization Works?
1. Normalization usually makes loss surface less ‘skewed’
2. BN may reduce the internal covariance shift

• [1502.03167] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (arxiv.org)

3. BN makes loss surface smoother
• [1805.11604] How Does Batch Normalization Help Optimization? (arxiv.org)

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1805.11604


Layer Normalization
• Batch normalization is dependent on the mini-batch size

• What about the network size is too big, so only few mini-batch sizes are allowed?

• It is not obvious how to apply batch normalization to RNNs

Layer normalization, Ba et al, arXiv 2016

𝜇𝜇𝑙𝑙 =
1
𝐻𝐻
�
𝑖𝑖=1

𝐻𝐻

𝑎𝑎𝑖𝑖𝑙𝑙 𝜎𝜎𝑙𝑙 =
1
𝐻𝐻
�
𝑖𝑖=1

𝐻𝐻

𝑎𝑎𝑖𝑖𝑙𝑙 − 𝜇𝜇𝑙𝑙 2

𝐻𝐻: the number of hidden units in a layer



Other Normalizaion Methods

Group normalization, Wu et al, ECCV 2018



Other Normalizaion Methods

Group normalization, Wu et al, ECCV 2018



Initialization



Weight Initialization
• Zero initialization

𝑥𝑥1

𝑥𝑥2

𝑦𝑦1

𝑧𝑧

𝑊𝑊(1) =
0 0
0 0
0 0

𝑦𝑦2

𝑦𝑦3

𝑊𝑊(2) = 0 0 0

𝑦𝑦 = 𝑊𝑊(1)𝑥𝑥

𝑧𝑧 = 𝑊𝑊(2)𝑦𝑦

𝑥𝑥 =
𝑥𝑥1
𝑥𝑥2 𝑦𝑦 =

0
0
0



Weight Initialization
• Zero initialization

𝑥𝑥1

𝑥𝑥2

𝑧𝑧

𝑊𝑊(1) =
0 0
0 0
0 0

𝑊𝑊(2) = 0 0 0 𝜕𝜕𝐿𝐿
𝜕𝜕𝑧𝑧

= 𝑘𝑘

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊(2) =

𝜕𝜕𝐿𝐿
𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
𝜕𝜕𝑊𝑊(2) = 𝑘𝑘𝑦𝑦⊤ = 0 0 0

𝜕𝜕𝐿𝐿
𝜕𝜕𝑦𝑦

=
𝜕𝜕𝐿𝐿
𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

= 𝑘𝑘𝑊𝑊 2 ⊤ =
0
0
0

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊(1) =

𝜕𝜕𝐿𝐿
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑊𝑊(1) =

𝜕𝜕𝐿𝐿
𝜕𝜕𝑦𝑦

𝑥𝑥⊤ =
0 0
0 0
0 0𝑥𝑥 =

𝑥𝑥1
𝑥𝑥2

𝑦𝑦1

𝑦𝑦2

𝑦𝑦3
𝑦𝑦 =

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3



Weight Initialization
• Same value initialization

𝑥𝑥1

𝑥𝑥2

𝑦𝑦1

𝑧𝑧

𝑊𝑊(1) =
𝑎𝑎 𝑎𝑎
𝑎𝑎 𝑎𝑎
𝑎𝑎 𝑎𝑎

𝑦𝑦2

𝑦𝑦3

𝑊𝑊(2) = 𝑏𝑏 𝑏𝑏 𝑏𝑏

𝑥𝑥 =
𝑥𝑥1
𝑥𝑥2 𝑦𝑦 =

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

𝜕𝜕𝐿𝐿
𝜕𝜕𝑧𝑧

= 𝑘𝑘

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊(2) =

𝜕𝜕𝐿𝐿
𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
𝜕𝜕𝑊𝑊(2) = 𝑘𝑘𝑦𝑦⊤ = 𝑘𝑘𝑦𝑦1 𝑘𝑘𝑦𝑦2 𝑘𝑘𝑦𝑦3

𝜕𝜕𝐿𝐿
𝜕𝜕𝑦𝑦

=
𝜕𝜕𝐿𝐿
𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

= 𝑘𝑘𝑊𝑊 2 ⊤ =
𝑘𝑘𝑏𝑏
𝑘𝑘𝑏𝑏
𝑘𝑘𝑏𝑏

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊(1) =

𝜕𝜕𝐿𝐿
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑊𝑊(1) =

𝜕𝜕𝐿𝐿
𝜕𝜕𝑦𝑦

𝑥𝑥⊤ =
𝑘𝑘𝑏𝑏𝑥𝑥1 𝑘𝑘𝑏𝑏𝑥𝑥2
𝑘𝑘𝑏𝑏𝑥𝑥1 𝑘𝑘𝑏𝑏𝑥𝑥2
𝑘𝑘𝑏𝑏𝑥𝑥1 𝑘𝑘𝑏𝑏𝑥𝑥2



Weight Initialization
• Same value initialization

𝑥𝑥1

𝑥𝑥2

𝑦𝑦1

𝑧𝑧

𝑊𝑊(1) =
𝑎𝑎 𝑎𝑎
𝑎𝑎 𝑎𝑎
𝑎𝑎 𝑎𝑎

𝑦𝑦2

𝑦𝑦3

𝑊𝑊(2) = 𝑏𝑏 𝑏𝑏 𝑏𝑏

𝑥𝑥 =
𝑥𝑥1
𝑥𝑥2 𝑦𝑦 =

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊(1) =

𝜕𝜕𝐿𝐿
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑊𝑊(1) =

𝜕𝜕𝐿𝐿
𝜕𝜕𝑦𝑦

𝑥𝑥⊤ =
𝑘𝑘𝑏𝑏𝑥𝑥1 𝑘𝑘𝑏𝑏𝑥𝑥2
𝑘𝑘𝑏𝑏𝑥𝑥1 𝑘𝑘𝑏𝑏𝑥𝑥2
𝑘𝑘𝑏𝑏𝑥𝑥1 𝑘𝑘𝑏𝑏𝑥𝑥2

𝑦𝑦1 = 𝑦𝑦2 = 𝑦𝑦3

Need to break ‘symmetry’



Weight Initialization

• Random initialization

𝑊𝑊 ~ 𝑁𝑁(0,𝜎𝜎2)



Weight Initialization

• Random initialization
• Gaussian with zero mean and ‘small standard deviation’
• Gaussian distributed input data

I2DL (niessner.github.io)

𝑊𝑊 ~ 𝑁𝑁(0, 0.01) Tanh

https://niessner.github.io/I2DL/


Weight Initialization

• Random initialization
• Gaussian with zero mean and ‘small standard deviation’
• Gaussian distributed input data

I2DL (niessner.github.io)

Vanishing gradient
(small output values)

𝑊𝑊 ~ 𝑁𝑁(0, 0.01) Tanh

https://niessner.github.io/I2DL/


Weight Initialization

• Random initialization
• Gaussian with zero mean and ‘large standard deviation’
• Gaussian distributed input data

I2DL (niessner.github.io)

𝑊𝑊 ~ 𝑁𝑁(0, 1) Tanh

https://niessner.github.io/I2DL/


Weight Initialization

I2DL (niessner.github.io)

𝑦𝑦1 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤3𝑥𝑥3 ⋯𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛

https://niessner.github.io/I2DL/


Xavier Initialization

• The more hidden units, less weight initial values
• Trying to ‘match’ the variance of each layers

I2DL (niessner.github.io)

Var �
𝑖𝑖=1

𝑛𝑛

𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

Var 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

= �
𝑖𝑖=1

𝑛𝑛

𝔼𝔼[𝑤𝑤𝑖𝑖2𝑥𝑥𝑖𝑖2] − 𝔼𝔼 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 2

= �
𝑖𝑖=1

𝑛𝑛

𝔼𝔼 𝑤𝑤𝑖𝑖 2Var[𝑥𝑥𝑖𝑖] + 𝔼𝔼 𝑥𝑥𝑖𝑖 2Var 𝑤𝑤𝑖𝑖 + Var 𝑥𝑥𝑖𝑖 Var 𝑤𝑤𝑖𝑖

= �
𝑖𝑖=1

𝑛𝑛

Var 𝑥𝑥𝑖𝑖 Var 𝑤𝑤𝑖𝑖 = 𝑛𝑛Var 𝑥𝑥𝑖𝑖 Var 𝑤𝑤𝑖𝑖

(Independent)

(Independent)

(i.i.d)

https://niessner.github.io/I2DL/


Xavier Initialization

• The more hidden units, less weight initial values
• Trying to ‘match’ the variance of each layers

I2DL (niessner.github.io)

Var �
𝑖𝑖=1

𝑛𝑛

𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 = 𝑛𝑛Var 𝑥𝑥𝑖𝑖 Var 𝑤𝑤𝑖𝑖 = Var 𝑥𝑥𝑖𝑖 (Var 𝑤𝑤𝑖𝑖 =
1
𝑛𝑛

)

https://niessner.github.io/I2DL/


Xavier Initialization

• The more hidden units, less weight initial values
• Trying to ‘match’ the variance of each layers 𝑊𝑊 ~ 𝑁𝑁(0,

1
𝑛𝑛

) Tanh

I2DL (niessner.github.io)

https://niessner.github.io/I2DL/


𝑊𝑊 ~ 𝑁𝑁(0,
1
𝑛𝑛

) ReLU

I2DL (niessner.github.io)

Xavier Initialization

• The more hidden units, less weight initial values
• Trying to ‘match’ the variance of each layers

https://niessner.github.io/I2DL/


Xavier Initialization

• ReLU zeros out the half of activations
𝑊𝑊 ~ 𝑁𝑁(0,

2
𝑛𝑛

) ReLU

I2DL (niessner.github.io)

https://niessner.github.io/I2DL/


𝑊𝑊 ~ 𝑁𝑁(0,
2
𝑛𝑛

) ReLU

I2DL (niessner.github.io)

Xavier Initialization

• ReLU zeros out the half of activations

https://niessner.github.io/I2DL/


𝑊𝑊 ~ 𝑁𝑁(0,
2
𝑛𝑛

)

I2DL (niessner.github.io)

Xavier Initialization

https://niessner.github.io/I2DL/


Data Augmentation



Data Augmentation
• Deep learning is data hungry and can be easily overfitted
• Let’s augment our datasets!

Data Augmentation by fastai v1. This article presents the techniques of… | by Pierre Guillou | Medium

https://medium.com/@pierre_guillou/data-augmentation-by-fastai-v1-84ca04bea302


Data Augmentation

Complete Guide to Data Augmentation for Computer Vision (notrocketscience.blog)

https://notrocketscience.blog/complete-guide-to-data-augmentation-for-computer-vision/


Data Augmentation

Improved Regularization of Convolutional Neural Networks with Cutout, DeVries et al, arXiv 2017

• Cutout



Data Augmentation

mixup: Beyond Empirical Risk Minimization, Zhang et al, ICLR 2018

• Mixup

�𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑖𝑖 + 1 − 𝜆𝜆 𝑥𝑥𝑗𝑗

�𝑦𝑦 = 𝜆𝜆𝑦𝑦𝑖𝑖 + 1 − 𝜆𝜆 𝑦𝑦𝑗𝑗

Data (image)

Label (one-hot)



Data Augmentation

mixup: Beyond Empirical Risk Minimization, Zhang et al, ICLR 2018

• Mixup



Learning Rates



Learning Rates

• The most important hyperparameter in training deep neural networks
• Even with the adaptive optimizers, e.g. ADAM, learning rate schedule is 

very important

1. The magnitude of the learning rate
• 0.1, 0.01, 0.001, 0.0001 would be a good candidate;;

2. The rate of decay
3. Initialization

11.11. Learning Rate Scheduling — Dive into Deep Learning 0.17.0 documentation (d2l.ai)

https://d2l.ai/chapter_optimization/lr-scheduler.html


Step Decay

Learning Rate Schedules and Adaptive Learning Rate Methods for Deep Learning | by Suki Lau | Towards Data Science

https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1


Step Decay

Model Zoo - ResNet MXNet Model

https://modelzoo.co/model/resnet-mxnet


Exponential Decay

Learning Rate Schedules and Adaptive Learning Rate Methods for Deep Learning | by Suki Lau | Towards Data Science

https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1


Cosine Scheduler

11.11. Learning Rate Scheduling — Dive into Deep Learning 0.17.0 documentation (d2l.ai)

𝜂𝜂t = 𝜂𝜂𝑇𝑇 +
𝜂𝜂0 − 𝜂𝜂𝑇𝑇

2
(1 + cos 𝜋𝜋𝜋𝜋/𝑇𝑇 )

• We might not want to decrease the 
learning rate too drastically in the 
beginning

• We might want to refine the 
solution at the end

https://d2l.ai/chapter_optimization/lr-scheduler.html


Warmup

11.11. Learning Rate Scheduling — Dive into Deep Learning 0.17.0 documentation (d2l.ai)

• Initialization is important
• By choosing sufficiently small 

learning rate to prevent divergence 
in the beginning

https://d2l.ai/chapter_optimization/lr-scheduler.html


Activation Functions



Sigmoid (a.k.a logistic)

𝜎𝜎 z =
1

1 + exp(−𝑧𝑧)

Saturated



Tanh

𝜎𝜎 z =
exp 𝑧𝑧 − exp −𝑧𝑧
exp 𝑧𝑧 + exp −𝑧𝑧

Saturated



ReLU

𝜎𝜎 z = max(𝑧𝑧, 0)



LeakyReLU

𝜎𝜎 z = max(𝑧𝑧, 0.01𝑧𝑧)



PReLU

𝜎𝜎 z = 𝑧𝑧, 𝑧𝑧 ≥ 0
𝑎𝑎𝑧𝑧, 𝑧𝑧 < 0



SoftPlus

𝜎𝜎 z = ln 1 + exp 𝑥𝑥



Swish

𝜎𝜎 z =
𝑥𝑥

1 + exp −𝑥𝑥



GELU

𝜎𝜎 z =
𝑥𝑥

1 + exp −1.702𝑥𝑥

• Used in GPT3
• Recent MLP architectures Swish

GELU



Sine

𝜎𝜎 z = sin 𝑥𝑥

• Used in implicit representation
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