[Fall, 2021. ICE3050]

Deep Learning

- Convolutional Neural Networks 2-

Eunbyung Park

Assistant Professor

School of Electronic and Electrical Engineering

Eunbyung Park (silverbottlep.github.io)

Various Types of Convolutions

Normal Convolutional Layer

1x1 Convolution (a.k.a Pointwise Convolution)

3x3 Convolution

1x1 Convolution

Separable Convolutions

• Spatial separable convolution

$$\begin{bmatrix} 3 & 6 & 9 \\ 4 & 8 & 12 \\ 5 & 10 & 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \times \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

Separable Convolutions

• Spatial separable convolution

Simple Convolution

Spatial Separable Convolution

Separable Convolutions

• Flattened convolution

(a) 3D convolution

(b) 1D convolutions over different directions

Flattened convolutional neural networks for feedforward acceleration, Jin et al, ICLR Workshop 2015

Depthwise Convolution

Depthwise Separable Convolution

- # parameters
 - *M*: 128 The number of input channels
 - *N*: 128 The number of output channels
 - D_K : 3 The size of a filter
 - D_F : 64 The size of a feature map

(a) Standard Convolution Filters

Standard Convolution

Depthwise Separable Convolution

(b) Depthwise Convolutional Filters

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, Howard et al, CVPR 2017

- # parameters
 - *M*: 128 The number of input channels
 - *N*: 128 The number of output channels
 - D_K : 3 The size of a filter
 - D_F : 64 The size of a feature map

(a) Standard Convolution Filters

Standard Convolution

Depthwise Separable Convolution

 $\begin{array}{c}1\\D_{K} & \square & \square & \square \\D_{K} & \longleftarrow & M & \square \end{array}$

(b) Depthwise Convolutional Filters

 $D_K D_K M N$ = 147,456

- Computational Cost (FLOPS)
 - *M*: 128 The number of input channels
 - *N*: 128 The number of output channels
 - D_K : 3 The size of a filter
 - D_F : 64 The size of a feature map

Standard Convolution

Depthwise Separable Convolution

- Computational Cost (FLOPS)
 - *M*: 128 The number of input channels
 - *N*: 128 The number of output channels
 - D_K : 3 The size of a filter
 - D_F : 64 The size of a feature map

Standard Convolution

Depthwise Separable Convolution

 $D_K D_K M N D_F D_F$ = 603,979,776

 $D_K D_K M D_F D_F + M N D_F D_F$ = 71,827,456

$$\frac{D_K D_K M D_F D_F + M N D_F D_F}{D_K D_K M N D_F D_F} = \frac{1}{N} + \frac{1}{D_K^2}$$

MobileNets

ConvNet w/ depthwise separable convolution

ModelImageNetMillionMillionAccuracyMult-AddsParametersConv MobileNet71.7%486629.3MobileNet70.6%5694.2

 Table 4. Depthwise Separable vs Full Convolution MobileNet

Grouped Convolution

- Convolutions in parallel
 - It was first Introduced in AlexNet to utilize the 2 GPUs distributed training
 - 1.5GB x 2 = 3GB

Grouped Convolution

- Convolutions in parallel
 - It was first Introduced in AlexNet to utilize the 2 GPUs distributed training
 - 1.5GB x 2 = 3GB

Shuffled Convolution

- To eliminate a side effect of the grouped convolutions
 - The outputs from a certain channel are only derived from a small fraction of input channels

Shuffled Convolution

• ShuffleNet

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices, Zhange et al, CVPR 2018

Dilated Convolution

• To aggregate multi-scale contextual information without losing resolution

Standard Convolution (I=1)

Dilated Convolution (I=2)

Review: DilatedNet — Dilated Convolution (Semantic Segmentation) | by Sik-Ho Tsang | Towards Data Science

Dilated Convolution

• To aggregate multi-scale contextual information without losing resolution

Receptive Fields

 $F_3 = \text{DilatedConv}(F_2, l = 4)$

Transposed Convolution

Transposed Convolutions explained with... MS Excel! | by Thom Lane | Apache MXNet | Medium

ImageNet Large Scale Visual Recognition Challenge

(ILSVRC)

ILSVRC

- ImageNet is an image database organized according to the WordNet hierarchy (nouns)
 - 1000 object classes
 - About 1.2M training images, 50K validation images, 100K test images
- The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 - 8 years history (2010 2017)
 - It was the most powerful driving force to facilitate deep learning research

IM¹GENET

Classification Results

Classification Results

AlexNet

- The winner of ILSVRC 2012
- It changed the entire computer vision research

ZFNet

- The winner of ILSVRC 2013
- The network architectures were developed by using the visualization techniques
 - Visualizing and Understanding Convolutional Networks, Zeiler et al, ECCV 2014
- Reduced the 1st layer filter size from 11x11 to 7x7
- 1st layer stride from 4 -> 2

VGGNet

Architecture comparison of AlexNet, VGGNet, ResNet, Inception, DenseNet | by Khush Patel | Towards Data Science

VGGNet

Architecture comparison of AlexNet, VGGNet, ResNet, Inception, DenseNet | by Khush Patel | Towards Data Science

VGGNet

(not counting biases) INPUT: [224x224x3] memory: 224*224*3=150K params: 0 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 POOL2: [56x56x128] memory: 56*56*128=400K params: 0 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 POOL2: [28x28x256] memory: 28*28*256=200K params: 0 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2.359.296 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 POOL2: [14x14x512] memory: 14*14*512=100K params: 0 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 POOL2: [7x7x512] memory: 7*7*512=25K params: 0 FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass) TOTAL params: 138M parameters

GoogLeNet

- Winner of ISLVRC 2014
- Also called 'Inception'

Max pooling

Concatenation

Convolution

GoogLeNet

• Inception module

(a) Inception module, naïve version

(b) Inception module with dimensionality reduction

GoogLeNet

• ILSVRC 2014 classification results

Team	Year	Place	Error (top-5)	Uses external data
SuperVision	2012	1st	16.4%	no
SuperVision	2012	1st	15.3%	Imagenet 22k
Clarifai	2013	1st	11.7%	no
Clarifai	2013	1st	11.2%	Imagenet 22k
MSRA	2014	3rd	7.35%	no
VGG	2014	2nd	7.32%	no
GoogLeNet	2014	1st	6.67%	no

ResNet

- The winner of ILSVRC 2015
- Residual building block

ResNet

Deep residual learning for image recognition, He et al, CVPR 2016

ResNet

• Training on ImageNet

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.
ResNet

• ILSVRC 2015 classification results

method	top-5 err. (test)
VGG [40] (ILSVRC'14)	7.32
GoogLeNet [43] (ILSVRC'14)	6.66
VGG [40] (v5)	6.8
PReLU-net [12]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Table 5. Error rates (%) of **ensembles**. The top-5 error is on the test set of ImageNet and reported by the test server.

Wide Residual Networks (WRNs)

- Diminishing feature reuse
 - The circuit complexity theory says that shallow circuits can require exponentially more parameters than deeper ones.
 - However, in the residual block w/ identity mapping, there is nothing to force the gradients to go through residual block weights
 - It is possible that there is there is either only a few blocks that learn useful representations or many blocks share very little information with small contribution
- 'Widening' of ResNet provides a much more effective way of improving performance
 - 50 times less layers and being more than 2 times faster

Wide Residual Networks (WRNs)

Wide Residual Networks (WRNs)

• ILSVRC classification results (single crop)

Model	top-1 err, %	top-5 err, %	#params	time/batch 16
ResNet-50	24.01	7.02	25.6M	49
ResNet-101	22.44	6.21	44.5M	82
ResNet-152	22.16	6.16	60.2M	115
WRN-50-2-bottleneck	21.9	6.03	68.9M	93
pre-ResNet-200	21.66	5.79	64.7M	154

ResNeXt

- The second ranked in ILSVRC 2016
 - 'Cardinality' matters (the number of transformations in the layers)
 - next dimension -> cardinality

Aggregated residual transformations for deep neural networks, Sie et al, BMVC 2017

Ensemble of Diverse Architecture

- The winner of ILSVRC 2016
 - Trimps-Soushen Team

Review: Trimps-Soushen — Winner in ILSVRC 2016 (Image Classification) | by Sik-Ho Tsang | Towards Data Science

Ensemble of Diverse Architecture

• ILSVRC classification results

	Inception- v3	Inception- v4	Inception- Resnet-v2	Resnet- 200	Wrn-68-3	Fusion (Val.)	Fusion (Test)
Err. (%)	4.20	4.01	3.52	4.26	4.65	2.92 (-0.6)	2.99

Review: Trimps-Soushen — Winner in ILSVRC 2016 (Image Classification) | by Sik-Ho Tsang | Towards Data Science

- The feature-maps of all preceding layers are used as inputs
 - For L layers block, $\frac{L(L+1)}{2}$ direct connections

• The feature-maps of all preceding layers are used as inputs

• For L layers block,
$$\frac{L(L+1)}{2}$$
 direct connections

ResNet

DenseNet

$$\mathbf{x}_{\ell} = H_{\ell}(\mathbf{x}_{\ell-1}) + \mathbf{x}_{\ell-1}$$

$$\mathbf{x}_{\ell} = H_{\ell}([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}])$$

Densely connected convolutional networks, Huang et al, CVPR 2017

• Parameter efficient

<u>Review: DenseNet — Dense Convolutional Network (Image Classification) | by Sik-Ho Tsang | Towards Data Science</u>

• Parameter efficient

Review: DenseNet — Dense Convolutional Network (Image Classification) | by Sik-Ho Tsang | Towards Data Science

Parameter efficient

Figure 3: Comparison of the DenseNets and ResNets top-1 error rates (single-crop testing) on the ImageNet validation dataset as a function of learned parameters (*left*) and FLOPs during test-time (*right*).

- The winner of ILSVRC 2017
- SE Block
 - Easily integrated into popular convolutional modules, e.g. ResNet, Inception, etc.
 - A 'light weight' gating mechanism to model channel-wise relationships

• SE Block

SE-Inception Module

• ILSVRC classification results

	224×224		320 imes 320 /		
			299×299		
	top-1	top-5	top-1	top-5	
	err.	err.	err.	err.	
ResNet-152 [10]	23.0	6.7	21.3	5.5	
ResNet-200 [11]	21.7	5.8	20.1	4.8	
Inception-v3 [44]	-	-	21.2	5.6	
Inception-v4 [42]	-	-	20.0	5.0	
Inception-ResNet-v2 [42]	-	-	19.9	4.9	
ResNeXt-101 (64 \times 4d) [47]	20.4	5.3	19.1	4.4	
DenseNet-264 [14]	22.15	6.12	-	-	
Attention-92 [46]	-	-	19.5	4.8	
Very Deep PolyNet [51] [†]	-	-	18.71	4.25	
PyramidNet-200 [8]	20.1	5.4	19.2	4.7	
DPN-131 [5]	19.93	5.12	18.55	4.16	
SENet-154	18.68	4.47	17.28	3.79	
NASNet-A (6@4032) [55] [†]	-	-	17.3^{\ddagger}	3.8^{\ddagger}	
SENet-154 (post-challenge)	-	-	16.88 [‡]	3.58 [‡]	

The Key Ingredients of Training CNNs

Drop-out/Drop-path

Dropout

- Turning off neurons w/ given probability (e.g. 0.5)
- Every iterations, new network architectures emerge

Dropout

- A simple way to train deep neural networks for improving generalization performance
- Avoiding co-adaptations: a hidden unit cannot rely on other hidden units being present
- Model averaging

Stochastic Depth (a.k.a DropPath)

- Training short networks and use deep networks at test time
- During training, randomly drop a subset of layers and bypass them with identity function

Stochastic Depth (a.k.a DropPath)

- Linearly decaying 'drop probability'
 - Later layers will be dropped more frequently

Fig. 2. The linear decay of p_{ℓ} illustrated on a ResNet with stochastic depth for $p_0 = 1$ and $p_L = 0.5$. Conceptually, we treat the input to the first ResBlock as H_0 , which is always active.

Stochastic Depth (a.k.a DropPath)

Normalization Methods

• Normalizing training sets

• Subtracting the mean

• Divide by standard deviation

• Standardization

z-score

- When un-normalized, the loss surface is more skewed (elongated)
 - Input feature scales are very different each other

dominates the update

Both parameters can be updated in equal proportions

- Normalizing inputs (also hidden units) based on mini-batch statistics
- Computing mean and variance given the current batch
- During testing, we may not have enough batch size for this (e.g. 1 batch), using mean and variance from the training phase

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\mathrm{Var}[x^{(k)}]}}$$

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Batch normalization: accelerating deep network training by reducing internal covariate shift, loffe et al, ICML 2015

Batch Normalization in CNN

- *M*: 128 The number of input channels
- D_F : 64 The size of a feature map
- |*B*|: 32 The mini-batch size

 $\mu \in \mathbb{R}^?, \sigma^2 \in \mathbb{R}^?$

Batch Normalization in CNN

- *M*: 128 The number of input channels
- D_F : 64 The size of a feature map
- |*B*|: 32 The mini-batch size

 $\mu \in \mathbb{R}^{128}$, $\sigma^2 \in \mathbb{R}^{128}$

Why Batch Normalization Works?

- 1. Normalization usually makes loss surface less 'skewed'
- 2. BN may reduce the internal covariance shift
 - [1502.03167] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (arxiv.org)
- 3. BN makes loss surface smoother
 - [1805.11604] How Does Batch Normalization Help Optimization? (arxiv.org)

Layer Normalization

- Batch normalization is dependent on the mini-batch size
 - What about the network size is too big, so only few mini-batch sizes are allowed?
- It is not obvious how to apply batch normalization to RNNs

H: the number of hidden units in a layer

Other Normalizaion Methods

Other Normalizaion Methods

Initialization

• Zero initialization

 $y = W^{(1)}x$ $z = W^{(2)}y$

• Zero initialization

$$\frac{\partial L}{\partial z} = k$$
$$\frac{\partial L}{\partial W^{(2)}} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial W^{(2)}} = ky^{\mathsf{T}} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$
$$\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y} = kW^{(2)^{\mathsf{T}}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\frac{\partial L}{\partial W^{(1)}} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial W^{(1)}} = \frac{\partial L}{\partial y} x^{\mathsf{T}} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

• Same value initialization

$$\begin{aligned} \frac{\partial L}{\partial z} &= k \\ \frac{\partial L}{\partial W^{(2)}} &= \frac{\partial L}{\partial z} \frac{\partial z}{\partial W^{(2)}} = ky^{\mathsf{T}} = \begin{bmatrix} ky_1 & ky_2 & ky_3 \end{bmatrix} \\ \frac{\partial L}{\partial y} &= \frac{\partial L}{\partial z} \frac{\partial z}{\partial y} = kW^{(2)^{\mathsf{T}}} = \begin{bmatrix} kb \\ kb \\ kb \end{bmatrix} \\ \frac{\partial L}{\partial W^{(1)}} &= \frac{\partial L}{\partial y} \frac{\partial y}{\partial W^{(1)}} = \frac{\partial L}{\partial y} x^{\mathsf{T}} = \begin{bmatrix} kbx_1 & kbx_2 \\ kbx_1 & kbx_2 \\ kbx_1 & kbx_2 \end{bmatrix} \end{aligned}$$

• Same value initialization

$$\frac{\partial L}{\partial W^{(1)}} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial W^{(1)}} = \frac{\partial L}{\partial y} x^{\mathsf{T}} = \begin{bmatrix} kbx_1 & kbx_2\\ kbx_1 & kbx_2\\ kbx_1 & kbx_2 \end{bmatrix}$$

 $y_1 = y_2 = y_3$

Need to break 'symmetry'

• Random initialization

 $W \sim N(0, \sigma^2)$

- Random initialization
 - Gaussian with zero mean and 'small standard deviation'
 - Gaussian distributed input data

- Random initialization
 - Gaussian with zero mean and 'small standard deviation'
 - Gaussian distributed input data

I2DL (niessner.github.io)

- Random initialization
 - Gaussian with zero mean and 'large standard deviation'
 - Gaussian distributed input data

$$y_1 = w_1 x_1 + w_2 x_2 + w_3 x_3 \cdots w_n x_n$$

- The more hidden units, less weight initial values
- Trying to 'match' the variance of each layers

$$\operatorname{Var}\left[\sum_{i=1}^{n} w_{i}x_{i}\right] = \sum_{i=1}^{n} \operatorname{Var}[w_{i}x_{i}]$$

$$= \sum_{i=1}^{n} \mathbb{E}[w_{i}^{2}x_{i}^{2}] - \mathbb{E}[w_{i}x_{i}]^{2} \qquad (\text{Independent})$$

$$= \sum_{i=1}^{n} \mathbb{E}[w_{i}]^{2}\operatorname{Var}[x_{i}] + \mathbb{E}[x_{i}]^{2}\operatorname{Var}[w_{i}] + \operatorname{Var}[x_{i}]\operatorname{Var}[w_{i}] \qquad (\text{Independent})$$

$$= \sum_{i=1}^{n} \operatorname{Var}[x_{i}]\operatorname{Var}[w_{i}] = n\operatorname{Var}[x_{i}]\operatorname{Var}[w_{i}] \qquad (\text{i.i.d})$$

- The more hidden units, less weight initial values
- Trying to 'match' the variance of each layers

$$\operatorname{Var}\left[\sum_{i=1}^{n} w_{i} x_{i}\right] = n \operatorname{Var}[x_{i}] \operatorname{Var}[w_{i}] = \operatorname{Var}[x_{i}] \qquad (\operatorname{Var}[w_{i}] = \frac{1}{n})$$

- The more hidden units, less weight initial values
- Trying to 'match' the variance of each layers

- The more hidden units, less weight initial values
- Trying to 'match' the variance of each layers

• ReLU zeros out the half of activations

$$W \sim N(0, \frac{2}{n})$$
 ReLU

• ReLU zeros out the half of activations

[docs]def xavier_normal_(tensor: Tensor, gain: float = 1.) -> Tensor: r"""Fills the input `Tensor` with values according to the method described in `Understanding the difficulty of training deep feedforward neural networks` - Glorot, X. & Bengio, Y. (2010), using a normal distribution. The resulting tensor will have values sampled from :math:`\mathcal{N}(0, \text{std}^2)` where

.. math::

```
\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} +
\text{fan\_out}}}
```

Also known as Glorot initialization.

Args: tensor: an n-dimensional `torch.Tensor` gain: an optional scaling factor

Examples:

```
>>> w = torch.empty(3, 5)
>>> nn.init.xavier_normal_(w)
"""
```

```
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
```

```
return _no_grad_normal_(tensor, 0., std)
```

 $W \sim N(0, \frac{2}{n})$

- Deep learning is data hungry and can be easily overfitted
- Let's augment our datasets!

Data Augmentation by fastai v1. This article presents the techniques of... | by Pierre Guillou | Medium

Crop

• Cutout

• Mixup

Data (image) $\hat{x} = \lambda x_i + (1 - \lambda) x_j$ Label (one-hot) $\hat{y} = \lambda y_i + (1 - \lambda) y_j$

• Mixup

Learning Rates

Learning Rates

- The most important hyperparameter in training deep neural networks
- Even with the adaptive optimizers, e.g. ADAM, learning rate schedule is very important
- 1. The magnitude of the learning rate
 - 0.1, 0.01, 0.001, 0.0001 would be a good candidate;;
- 2. The rate of decay
- 3. Initialization

Step Decay

Learning Rate Schedules and Adaptive Learning Rate Methods for Deep Learning | by Suki Lau | Towards Data Science

Step Decay

Exponential Decay

Learning Rate Schedules and Adaptive Learning Rate Methods for Deep Learning | by Suki Lau | Towards Data Science

Cosine Scheduler

- We might not want to decrease the learning rate too drastically in the beginning
- We might want to refine the solution at the end

$$\eta_{t} = \eta_{T} + \frac{\eta_{0} - \eta_{T}}{2} (1 + \cos(\pi t/T))$$

Warmup

- Initialization is important
- By choosing sufficiently small learning rate to prevent divergence in the beginning

Activation Functions

Sigmoid (a.k.a logistic)

Saturated

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Tanh

Saturated

ReLU

 $\sigma(\mathbf{z}) = \max(z, 0)$

LeakyReLU

$$\sigma(z) = \max(z, 0.01z)$$

PReLU

$$\sigma(z) = \begin{cases} z, & z \ge 0 \\ az, & z < 0 \end{cases}$$

SoftPlus

$$\sigma(z) = \ln(1 + \exp(x))$$

Swish

$$\sigma(z) = \frac{x}{1 + \exp(-x)}$$

GELU

- Used in GPT3
- Recent MLP architectures

$$\sigma(z) = \frac{x}{1 + \exp(-1.702x)}$$

Sine

