Deep Learning

Eunbyung Park

Assistant Professor

School of Electronic and Electrical Engineering

Eunbyung Park (silverbottlep.github.io)

202
=l
TH
: o
2kl

‘ 1398 ;


https://silverbottlep.github.io/

Transformers

e Revolutionize NLP Attention Is All You Need

* Attention based model
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.



Transformers

* Transforms Input vectors to output vectors

e Attentional modeling
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Transformers Applications

* Sentence Classification
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Transformers Applications

* Machine Translation
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Transformers Applications

* Language generation (next word prediction)
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Attention

* Given the query, extract and aggregate relevant information
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Attention Model Example

» Attention for sequence-to-sequence
* E.g. machine translation
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Bahdanau et al, Neural machine translation by jointly learning to align and translate, ICLR 2015



Input Embedding

* Mapping ‘one-hot’ to ‘vectors’
* Input token -> one-hot encoding -> vector

Input Embedding

I Embedding matrix

[0,0,0,1,0,0,0,0,0, ... 0]
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Positional Encoding

 Transformers are ‘orderless’ architecture
* Additional time (order) information are needed

PE(t) = [..., cos(Znaf/mt) ,sin(Znaf/mt), T

(forj=0,...,m—1)

The lllustrated Transformer — Jay Alammar — Visualizing machine learning one concept at a time. (jalammar.github.io)



http://jalammar.github.io/illustrated-transformer/

Positional Input Embeddings

* Function of input embeddings and positional encodings
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Self-Attention

* (Input) -> (query, key, value)
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Self-Attention

e Attention over each other
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Self-Attention

e Attention over each other
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Self-Attention

e Attention over each other
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Self-Attention
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Self-Attention

e Attention over each other
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K = XW,
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d;: dimension of query and keys



Multi-Head Attention

* Multiple self-attention modules

WO = Rvatho XWO = . . . . .

Self-attention 1 Self-attention 2 Self-attention 3




Multi-Head Attention

* Multi-head + residual connection + layer normalization
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Transformers for Language Modeling

* Language modeling as next word prediction
* Autoregressive generation
* Training is parallelizable w/ attention mask

Attention Attention
p (x5 |x1) Score Mask

p(x3 |X2, xl)

p(x4|x3)x2; xl)
p(xs5)xy, X3, X2, %1) 1 batch -> 5 training examples

p(xg|xs, X4, X3, X3, X1)

one step left-shifted
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GPT3

* An autoregressive transformer language model w/ 175 billion parameters

Language Models are Few-Shot Learners
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Scaling Up Language Models
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Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World’s Largest and Most Powerful Generative Language Model - Microsoft Research



https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

BERT (Pre-Training Bidirectional Transformers)

* Masked-LM
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BERT Explained: State of the art language model for NLP | by Rani Horev | Towards Data Science



https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270

BERT (Pre-Training Bidirectional Transformers)

* Masked-LM pre-training, then fine-tuning
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al, NAACL 2019



BERT (Pre-Training Bidirectional Transformers)

* Masked-LM pre-training, then fine-tuning
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al, NAACL 2019



Vision Transformers (ViT)

Vision Transformer (ViT)
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An Image is worth 16x16 words: Transformers for image recognition at scale, Dosovitskiy et al, ICLR 2021
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